Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. SreeHarsha N, Maheshwari R, Al-Dhubiab BE, Tekade M, Sharma MC, Venugopala KN, et al.
    Int J Nanomedicine, 2019;14:7419-7429.
    PMID: 31686814 DOI: 10.2147/IJN.S211224
    Background: Prostate cancer (PC) has the highest prevalence in men and accounts for a high rate of neoplasia-related death. Doxorubicin (DOX) is one of the most widely used anti-neoplastic drugs for prostate cancer among others. However, it has low specificity and many side effects and affects normal cells. More recently, there have been newly developed drug delivery tools which are graphene or graphene-based, used to increase the specificity of the delivered drug molecules. The graphene derivatives possess both π-π stacking and increased hydrophobicity, factors that increase the likelihood of drug delivery. Despite this, the hydrophilicity of graphene remains problematic, as it induced problems with stability. For this reason, the use of a chitosan coating remains one way to modify the surface features of graphene.

    Method: In this investigation, a hybrid nanoparticle that consisted of a DOX-loaded reduced graphene oxide that is stabilized with chitosan (rGOD-HNP) was developed.

    Result: The newly developed rGOD-HNP demonstrated high biocompatibility and efficiency in entrapping DOX (~65%) and releasing it in a controlled manner (~50% release in 48 h). Furthermore, it was also demonstrated that rGOD-HNP can intracellularly deliver DOX and more specifically in PC-3 prostate cancer cells.

    Conclusion: This delivery tool offers a feasible and viable method to deliver DOX photo-thermally in the treatment of prostate cancer.

    Matched MeSH terms: Hemolysis/drug effects
  2. Dwivedi MK, Shukla R, Sharma NK, Manhas A, Srivastava K, Kumar N, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114076.
    PMID: 33789139 DOI: 10.1016/j.jep.2021.114076
    ETHANOPHARMACOLOGICAL RELEVANCE: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems.

    AIM OF THE STUDY: The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS.

    MATERIALS AND METHODS: Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 μm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source.

    RESULTS: The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 μg/ml and 7.43 μg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds.

    CONCLUSIONS: The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.

    Matched MeSH terms: Hemolysis/drug effects
  3. Abbasi MA, Irshad M, Aziz-Ur-Rehman -, Siddiqui SZ, Nazir M, Ali Shah SA, et al.
    Pak J Pharm Sci, 2020 Sep;33(5):2161-2170.
    PMID: 33824125
    In the presented work, 2,3-dihydro-1,4-benzodioxin-6-amine (1) was reacted with 4-chlorobenzenesulfonyl chloride (2) in presence of aqueous basic aqueous medium to obtain 4-chloro-N-(2,3-dihydro-1,4-benzodioxin-6-yl)benzenesulfonamide (3). In parallel, various un/substituted anilines (4a-l) were treated with bromoacetyl bromide (5) in basified aqueous medium to obtain corresponding 2-bromo-N-(un/substituted)phenylacetamides (6a-l) as electrophiles. Then the compound 3 was finally reacted with these electrophiles, 6a-l, in dimethylformamide (DMF) as solvent and lithium hydride as base and activator to synthesize a variety of 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(un/substituted)phenylacetamides (7a-l). The synthesized compounds were corroborated by IR, 1H-NMR and EI-MS spectral data for structural confirmations. These molecules were then evaluated for their antimicrobial and antifungal activities along with their %age hemolytic activity. Some compounds were found to have suitable antibacterial and antifungal potential, especially the compound 2-[[(4-chlorophenyl)sulfonyl](2,3-dihydro-1,4-benzodioxin-6-yl)amino]-N-(3,5-dimethylphenyl)acetamide (7l) exhibited good antimicrobial potential with low value of % hemolytic activity.
    Matched MeSH terms: Hemolysis/drug effects
  4. Ravichandran G, Kumaresan V, Mahesh A, Dhayalan A, Arshad A, Arasu MV, et al.
    Int J Biol Macromol, 2018 Jan;106:1014-1022.
    PMID: 28837852 DOI: 10.1016/j.ijbiomac.2017.08.098
    Chitinases play a vital role during the pathogenic invasion and immunosuppression in various organisms including invertebrates and vertebrates. In this study, we have investigated the participation of MrChit-3 (Macrobrachium rosenbergii Chitinase-3) during host-pathogenic interaction in freshwater prawn, M. rosenbergii. Quantitative real-time PCR analysis showed that the expression of MrChit-3 was up-regulated during bacterial, viral and laminarin challenge. Moreover, to understand the antimicrobial role of the GH18 domain, a putative membrane-targeting antimicrobial peptide (MrVG) was identified from the GH18 domain region of the protein and it was chemically synthesized. Physico-chemical features of the GH18 derived antimicrobial peptide (AMP) was assessed by various in silico tools and the antimicrobial property of the peptide was confirmed from in vitro studies. The membrane targeting mechanism of the peptide was determined by flow cytometry (FACS) and scanning electron microscope (SEM) analysis. Interestingly, the peptide was able to inhibit the growth of a chitinolytic fungal pathogen, Aspergillus niger, which was isolated from the shells of M. rosenbergii. The toxicity studies such as hemolysis activity on human blood erythrocytes and cell viability assay with primary kidney cells, HEK293 of MrVG revealed that the peptide was not involved in inducing any toxicity.
    Matched MeSH terms: Hemolysis/drug effects
  5. Commons RJ, Simpson JA, Thriemer K, Chu CS, Douglas NM, Abreha T, et al.
    BMC Med, 2019 08 01;17(1):151.
    PMID: 31366382 DOI: 10.1186/s12916-019-1386-6
    BACKGROUND: Malaria causes a reduction in haemoglobin that is compounded by primaquine, particularly in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of this study was to determine the relative contributions to red cell loss of malaria and primaquine in patients with uncomplicated Plasmodium vivax.

    METHODS: A systematic review identified P. vivax efficacy studies of chloroquine with or without primaquine published between January 2000 and March 2017. Individual patient data were pooled using standardised methodology, and the haematological response versus time was quantified using a multivariable linear mixed effects model with non-linear terms for time. Mean differences in haemoglobin between treatment groups at day of nadir and day 42 were estimated from this model.

    RESULTS: In total, 3421 patients from 29 studies were included: 1692 (49.5%) with normal G6PD status, 1701 (49.7%) with unknown status and 28 (0.8%) deficient or borderline individuals. Of 1975 patients treated with chloroquine alone, the mean haemoglobin fell from 12.22 g/dL [95% CI 11.93, 12.50] on day 0 to a nadir of 11.64 g/dL [11.36, 11.93] on day 2, before rising to 12.88 g/dL [12.60, 13.17] on day 42. In comparison to chloroquine alone, the mean haemoglobin in 1446 patients treated with chloroquine plus primaquine was - 0.13 g/dL [- 0.27, 0.01] lower at day of nadir (p = 0.072), but 0.49 g/dL [0.28, 0.69] higher by day 42 (p  25% to  5 g/dL.

    CONCLUSIONS: Primaquine has the potential to reduce malaria-related anaemia at day 42 and beyond by preventing recurrent parasitaemia. Its widespread implementation will require accurate diagnosis of G6PD deficiency to reduce the risk of drug-induced haemolysis in vulnerable individuals.

    TRIAL REGISTRATION: This trial was registered with PROSPERO: CRD42016053312. The date of the first registration was 23 December 2016.

    Matched MeSH terms: Hemolysis/drug effects
  6. Sarwar A, Katas H, Samsudin SN, Zin NM
    PLoS One, 2015;10(4):e0123084.
    PMID: 25928293 DOI: 10.1371/journal.pone.0123084
    Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP) and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC) of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene) triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide) triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68) demonstrated the safety; suggesting that these derivatives could be used in future medical applications. Chitosan derivatives with triazole functionality, synthesized by Huisgen 1,3-dipolar cycloaddition, and their nanoparticles showed significant enhancement in antibacterial and antifungal activities in comparison to those associated with native, non-altered chitosan.
    Matched MeSH terms: Hemolysis/drug effects
  7. Jiang H, Mani MP, Jaganathan SK
    Int J Nanomedicine, 2019;14:8149-8159.
    PMID: 31632024 DOI: 10.2147/IJN.S214646
    INTRODUCTION: Recently several new approaches were emerging in bone tissue engineering to develop a substitute for remodelling the damaged tissue. In order to resemble the native extracellular matrix (ECM) of the human tissue, the bone scaffolds must possess necessary requirements like large surface area, interconnected pores and sufficient mechanical strength.

    MATERIALS AND METHODS: A novel bone scaffold has been developed using polyurethane (PE) added with wintergreen (WG) and titanium dioxide (TiO2). The developed nanocomposites were characterized through field emission scanning electron microscopy (FESEM), Fourier transform and infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle measurement, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile testing. Furthermore, anticoagulant assays, cell viability analysis and calcium deposition were used to investigate the biological properties of the prepared hybrid nanocomposites.

    RESULTS: FESEM depicted the reduced fibre diameter for the electrospun PE/WG and PE/WG/TiO2 than the pristine PE. The addition of WG and TiO2 resulted in the alteration in peak intensity of PE as revealed in the FTIR. Wettability measurements showed the PE/WG showed decreased wettability and the PE/WG/TiO2 exhibited improved wettability than the pristine PE. TGA measurements showed the improved thermal behaviour for the PE with the addition of WG and TiO2. Surface analysis indicated that the composite has a smoother surface rather than the pristine PE. Further, the incorporation of WG and TiO2 improved the anticoagulant nature of the pristine PE. In vitro cytotoxicity assay has been performed using fibroblast cells which revealed that the electrospun composites showed good cell attachment and proliferation after 5 days. Moreover, the bone apatite formation study revealed the enhanced deposition of calcium content in the fabricated composites than the pristine PE.

    CONCLUSION: Fabricated nanocomposites rendered improved physico-chemical properties, biocompatibility and calcium deposition which are conducive for bone tissue engineering.

    Matched MeSH terms: Hemolysis/drug effects
  8. Hassan M, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Shahzadi S, Raza H, et al.
    Bioorg Chem, 2019 10;91:103138.
    PMID: 31446329 DOI: 10.1016/j.bioorg.2019.103138
    In the designed research work, a series of 2-furoyl piperazine based sulfonamide derivatives were synthesized as therapeutic agents to target the Alzheimer's disease. The structures of the newly synthesized compounds were characterized through spectral analysis and their inhibitory potential was evaluated against butyrylcholinesterase (BChE). The cytotoxicity of these sulfonamides was also ascertained through hemolysis of bovine red blood cells. Furthermore, compounds were inspected by Lipinki Rule and their binding profiles against BChE were discerned by molecular docking. The protein fluctuations in docking complexes were recognized by dynamic simulation. From our in vitro and in silico results 5c, 5j and 5k were identified as promising lead compounds for the treatment of targeted disease.
    Matched MeSH terms: Hemolysis/drug effects
  9. Cooper DJ, Plewes K, Grigg MJ, Rajahram GS, Piera KA, William T, et al.
    Trials, 2018 Apr 24;19(1):250.
    PMID: 29690924 DOI: 10.1186/s13063-018-2600-0
    BACKGROUND: Plasmodium knowlesi is the most common cause of human malaria in Malaysia. Acute kidney injury (AKI) is a frequent complication. AKI of any cause can have long-term consequences, including increased risk of chronic kidney disease, adverse cardiovascular events and increased mortality. Additional management strategies are therefore needed to reduce the frequency and severity of AKI in malaria. In falciparum malaria, cell-free haemoglobin (CFHb)-mediated oxidative damage contributes to AKI. The inexpensive and widely available drug paracetamol inhibits CFHb-induced lipid peroxidation via reduction of ferryl haem to the less toxic Fe3+ state, and has been shown to reduce oxidative damage and improve renal function in patients with sepsis complicated by haemolysis as well as in falciparum malaria. This study aims to assess the ability of regularly dosed paracetamol to reduce the incidence and severity of AKI in knowlesi malaria by attenuating haemolysis-induced oxidative damage.

    METHODS: PACKNOW is a two-arm, open-label randomised controlled trial of adjunctive paracetamol versus no paracetamol in patients aged ≥ 5 years with knowlesi malaria, conducted over a 2-year period at four hospital sites in Sabah, Malaysia. The primary endpoint of change in creatinine from enrolment to 72 h will be evaluated by analysis of covariance (ANCOVA) using enrolment creatinine as a covariate. Secondary endpoints include longitudinal changes in markers of oxidative stress (plasma F2-isoprostanes and isofurans) and markers of endothelial activation/Weibel-Palade body release (angiopoietin-2, von Willebrand Factor, P-selectin, osteoprotegerin) over 72 h, as well as blood and urine biomarkers of AKI. This study will be powered to detect a difference between the two treatment arms in a clinically relevant population including adults and children with knowlesi malaria of any severity.

    DISCUSSION: Paracetamol is widely available and has an excellent safety profile; if a renoprotective effect is demonstrated, this trial will support the administration of regularly dosed paracetamol to all patients with knowlesi malaria. The secondary outcomes in this study will provide further insights into the pathophysiology of haemolysis-induced oxidative damage and acute kidney injury in knowlesi malaria and other haemolytic diseases.

    TRIAL REGISTRATION: Clinicaltrials.gov, NCT03056391 . Registered on 12 October 2016.

    Matched MeSH terms: Hemolysis/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links