Displaying publications 21 - 40 of 124 in total

Abstract:
Sort:
  1. Liew YK, Awang Hamat R, van Belkum A, Chong PP, Neela V
    Clin Vaccine Immunol, 2015 May;22(5):593-603.
    PMID: 25809633 DOI: 10.1128/CVI.00493-14
    The exoproteome of Staphylococcus aureus contains enzymes and virulence factors that are important for host adaptation. We investigated the exoprotein profiles and cytokine/chemokine responses obtained in three different S. aureus-host interaction scenarios by using two-dimensional gel electrophoresis (2-DGE) and two-dimensional immunoblotting (2D-IB) combined with tandem mass spectrometry (MS/MS) and cytometric bead array techniques. The scenarios included S. aureus bacteremia, skin and soft tissue infections (SSTIs), and healthy carriage. By the 2-DGE approach, 12 exoproteins (the chaperone protein DnaK, a phosphoglycerate kinase [Pgk], the chaperone GroEL, a multisensor hybrid histidine kinase, a 3-methyl-2-oxobutanoate hydroxymethyltransferase [PanB], cysteine synthase A, an N-acetyltransferase, four isoforms of elongation factor Tu [EF-Tu], and one signature protein spot that could not be reliably identified by MS/MS) were found to be consistently present in more than 50% of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed any of these proteins. By the 2D-IB approach, we also identified five antigens (methionine aminopeptidase [MetAPs], exotoxin 15 [Set15], a peptidoglycan hydrolase [LytM], an alkyl hydroperoxide reductase [AhpC], and a haptoglobin-binding heme uptake protein [HarA]) specific for SSTI cases. Cytokine and chemokine production varied during the course of different infection types and carriage. Monokine induced by gamma interferon (MIG) was more highly stimulated in bacteremia patients than in SSTI patients and healthy carriers, especially during the acute phase of infection. MIG could therefore be further explored as a potential biomarker of bacteremia. In conclusion, 12 exoproteins from bacteremia isolates, MIG production, and five antigenic proteins identified during SSTIs should be further investigated for potential use as diagnostic markers.
    Matched MeSH terms: Host-Pathogen Interactions
  2. Osman AY, Saharee AA, Jesse FF, Kadir AA
    Microb Pathog, 2017 Sep;110:365-374.
    PMID: 28710016 DOI: 10.1016/j.micpath.2017.07.014
    In this study, we developed a mouse model and characterized the effects of intranasal inoculation of virulent Brucella melitensis strain 16M and its lipopolysaccharide (LPS). The effects of the exposure were compared with respective control groups. Both Brucella melitensis-infected and LPS-infected groups showed no significant clinical presentation with minor relevance in the mortality associated with the infection. In Brucella melitensis-infected group, significant histopathological changes in comparison to the LPS infected group with increase bacterial burden in the lungs, reproductive and reticuloendothelial organs were observed. However, both infected groups showed elevated levels of pro-inflammatory cytokine expression (IL-1β and IL6) and antibody production (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes was recorded in both infected groups throughout the experimental period. This is the first detailed investigation comparing the infection progression and host responses in relation to the immunopathophysiological aspects in mouse model after intranasal inoculation with B. melitensis and its lipopolysaccharide. The study revealed a significant difference between infected and control groups with overlap in clinical, pathological, and immunological responses as well as sex related hormonal changes resulting from the infections.
    Matched MeSH terms: Host-Pathogen Interactions/immunology
  3. Lee SH, Ooi SK, Mahadi NM, Tan MW, Nathan S
    PLoS One, 2011;6(3):e16707.
    PMID: 21408228 DOI: 10.1371/journal.pone.0016707
    Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. Much remains to be known about the contributions of genotypic variations within the bacteria and the host, and environmental factors that lead to the manifestation of the clinical symptoms of melioidosis.
    Matched MeSH terms: Host-Pathogen Interactions*
  4. Khan S, Zakariah M, Palaniappan S
    Tumour Biol., 2016 Aug;37(8):10805-13.
    PMID: 26874727 DOI: 10.1007/s13277-016-4970-9
    Cancer has long been assumed to be a genetic disease. However, recent evidence supports the enigmatic connection of bacterial infection with the growth and development of various types of cancers. The cause and mechanism of the growth and development of prostate cancer due to Mycoplasma hominis remain unclear. Prostate cancer cells are infected and colonized by enteroinvasive M. hominis, which controls several factors that can affect prostate cancer growth in susceptible persons. We investigated M. hominis proteins targeting the nucleus of host cells and their implications in prostate cancer etiology. Many vital processes are controlled in the nucleus, where the proteins targeting M. hominis may have various potential implications. A total of 29/563 M. hominis proteins were predicted to target the nucleus of host cells. These include numerous proteins with the capability to alter normal growth activities. In conclusion, our results emphasize that various proteins of M. hominis targeted the nucleus of host cells and were involved in prostate cancer etiology through different mechanisms and strategies.
    Matched MeSH terms: Host-Pathogen Interactions
  5. Soe HJ, Manikam R, Raju CS, Khan MA, Sekaran SD
    PLoS One, 2020;15(8):e0237141.
    PMID: 32764789 DOI: 10.1371/journal.pone.0237141
    Severe dengue can be lethal caused by manifestations such as severe bleeding, fluid accumulation and organ impairment. This study aimed to investigate the role of dengue non-structural 1 (NS1) protein and host factors contributing to severe dengue. Electrical cell-substrate impedance sensing system was used to investigate the changes in barrier function of microvascular endothelial cells treated NS1 protein and serum samples from patients with different disease severity. Cytokines and metabolites profiles were assessed using a multiplex cytokine assay and liquid chromatography mass spectrometry respectively. The findings showed that NS1 was able to induce the loss of barrier function in microvascular endothelium in a dose dependent manner, however, the level of NS1 in serum samples did not correlate with the extent of vascular leakage induced. Further assessment of host factors revealed that cytokines such as CCL2, CCL5, CCL20 and CXCL1, as well as adhesion molecule ICAM-1, that are involved in leukocytes infiltration were expressed higher in dengue patients in comparison to healthy individuals. In addition, metabolomics study revealed the presence of deregulated metabolites involved in the phospholipid metabolism pathway in patients with severe manifestations. In conclusion, disease severity in dengue virus infection did not correlate directly with NS1 level, but instead with host factors that are involved in the regulation of junctional integrity and phospholipid metabolism. However, as the studied population was relatively small in this study, these exploratory findings should be confirmed by expanding the sample size using an independent cohort to further establish the significance of this study.
    Matched MeSH terms: Host-Pathogen Interactions/immunology*
  6. Vignesh R, Swathirajan CR, Tun ZH, Rameshkumar MR, Solomon SS, Balakrishnan P
    Front Immunol, 2020;11:607734.
    PMID: 33569053 DOI: 10.3389/fimmu.2020.607734
    Matched MeSH terms: Host-Pathogen Interactions
  7. Khoo CK, Abdul-Murad AM, Kua BC, Mohd-Adnan A
    Fish Shellfish Immunol, 2012 Oct;33(4):788-94.
    PMID: 22842150 DOI: 10.1016/j.fsi.2012.07.005
    Cryptocaryoniasis (also known as marine white spot disease) is mediated by Cryptocaryon irritans. This obligate ectoparasitic protozoan infects virtually all marine teleosts, which includes Lates calcarifer, a highly valuable aquaculture species. Little is known about L. calcarifer-C. irritans interactions. This study was undertaken to gain an informative snapshot of the L. calcarifer transcriptomic response over the course of C. irritans infection. An in-house fabricated cDNA microarray slides containing 3872 probes from L. calcarifer liver and spleen cDNA libraries were used as a tool to investigate the response of L. calcarifer to C. irritans infection. Juvenile fish were infected with parasites for four days, and total RNA was extracted from liver tissue, which was harvested daily. We compared the transcriptomes of C. irritans-infected liver to uninfected liver over an infection period of four days; the comparison was used to identify the genes with altered expression levels in response to C. irritans infection. The greatest number of infection-modulated genes was recorded at 2 and 3 days post-infection. These genes were mainly associated with the immune response and were associated in particular with the acute phase response. Acute phase proteins such as hepcidin, C-type lectin and serum amyloid A are among the highly modulated genes. Our results indicate that an induced acute phase response in L. calcarifer toward C. irritans infection is similar to the responses observed in bacterial infections of teleosts. This response demonstrates the importance of first line defenses in teleost innate immune responses against ectoparasite infection.
    Matched MeSH terms: Host-Pathogen Interactions
  8. Guan HH, Yoshimura M, Chuankhayan P, Lin CC, Chen NC, Yang MC, et al.
    Sci Rep, 2015 Nov 13;5:16441.
    PMID: 26563565 DOI: 10.1038/srep16441
    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.
    Matched MeSH terms: Host-Pathogen Interactions
  9. Mangavelu, Ashwaani, Yahaya M. Normi, Leow, Adam Thean Chor, Mohd Shukuri Mohammad Ali, Raja Noor Zaliha Raja Abd. Rahman
    MyJurnal
    Transition metals are required constituent in bacterial metabolism to assist in some enzymatic reactions. However, intracellular accumulations of these metal ions are harmful to the bacteria as it can trigger unnecessary redox reactions. To overcome this condition, metalloregulatory proteins assist organisms to adapt to sudden elevated and deprived metal ion concentration in the environment via metal homeostasis. CsoR protein is a copper(I) [Cu(I)] sensing operon repressor that is found to be present in all major classes of eubacteria. This metalloregulatory protein binds to the operator region in its apo state under Cu(I) limiting condition and detaches off from the regulatory region when it binds to the excess cytosolic Cu(I) ion, thus derepressing the expression of genes involved in Cu(I) homeostasis. CsoR proteins exist in dimeric and tetrameric states and form certain coordination geometries upon attachment with Cu(I). Certain CsoR proteins have also been found to possess the ability to bind to other types of metals with various binding affinities in some Gram positive bacteria. The role of this metalloregulatory protein in host pathogen interaction and its relation to bacterial virulence are also discussed.
    Matched MeSH terms: Host-Pathogen Interactions
  10. Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Latif MA
    C. R. Biol., 2015 May;338(5):321-34.
    PMID: 25843222 DOI: 10.1016/j.crvi.2015.03.001
    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future.
    Matched MeSH terms: Host-Pathogen Interactions
  11. Low CF, Rozaini MZH, Musa N, Syarul Nataqain B
    J Fish Dis, 2017 Oct;40(10):1267-1277.
    PMID: 28252175 DOI: 10.1111/jfd.12610
    The approaches of transcriptomic and proteomic have been widely used to study host-pathogen interactions in fish diseases, and this is comparable to the recently emerging application of metabolomic in elucidating disease-resistant mechanisms in fish that gives new insight into potential therapeutic strategies to improve fish health. Metabolomic is defined as the large-scale study of all metabolites within an organism and represents the frontline in the 'omics' approaches, providing direct information on the metabolic responses and perturbations in metabolic pathways. In this review, the current research in infectious fish diseases using metabolomic approach will be summarized. The metabolomic approach in economically important fish infected with viruses, bacteria and nematodes will also be discussed. The potential of the metabolomic approach for management of these infectious diseases as well as the challenges and the limitations of metabolomic in fish disease studies will be explored. Current review highlights the impacts of metabolomic studies in infectious fish diseases, which proposed the potential of new therapeutic strategies to enhance disease resistance in fish.
    Matched MeSH terms: Host-Pathogen Interactions
  12. Rosilan NF, Waiho K, Fazhan H, Sung YY, Zakaria NH, Afiqah-Aleng N, et al.
    Fish Shellfish Immunol, 2023 Nov;142:109171.
    PMID: 37858788 DOI: 10.1016/j.fsi.2023.109171
    Protein-protein interactions (PPIs) are essential for understanding cell physiology in normal and pathological conditions, as they might involve in all cellular processes. PPIs have been widely used to elucidate the pathobiology of human and plant diseases. Therefore, they can also be used to unveil the pathobiology of infectious diseases in shrimp, which is one of the high-risk factors influencing the success or failure of shrimp production. PPI network analysis, specifically host-pathogen PPI (HP-PPI), provides insights into the molecular interactions between the shrimp and pathogens. This review quantitatively analyzed the research trends within this field through bibliometric analysis using specific keywords, countries, authors, organizations, journals, and documents. This analysis has screened 206 records from the Scopus database for determining eligibility, resulting in 179 papers that were retrieved for bibliometric analysis. The analysis revealed that China and Thailand were the driving forces behind this specific field of research and frequently collaborated with the United States. Aquaculture and Diseases of Aquatic Organisms were the prominent sources for publications in this field. The main keywords identified included "white spot syndrome virus," "WSSV," and "shrimp." We discovered that studies on HP-PPI are currently quite scarce. As a result, we further discussed the significance of HP-PPI by highlighting various approaches that have been previously adopted. These findings not only emphasize the importance of HP-PPI but also pave the way for future researchers to explore the pathogenesis of infectious diseases in shrimp. By doing so, preventative measures and enhanced treatment strategies can be identified.
    Matched MeSH terms: Host-Pathogen Interactions
  13. Umareddy I, Tang KF, Vasudevan SG, Devi S, Hibberd ML, Gu F
    J Gen Virol, 2008 Dec;89(Pt 12):3052-3062.
    PMID: 19008393 DOI: 10.1099/vir.0.2008/001594-0
    Outbreaks of dengue disease are constant threats to tropical and subtropical populations but range widely in severity, from mild to haemorrhagic fevers, for reasons that are still elusive. We investigated the interferon (IFN) response in infected human cell lines A549 and HepG2, using two strains (NGC and TSV01) of dengue serotype 2 (DEN2) and found that the two viruses exhibited a marked difference in inducing type I IFN response. While TSV01 infection led to activation of type I antiviral genes such as EIF2AK2 (PKR), OAS, ADAR and MX, these responses were absent in NGC-infected cells. Biochemical analysis revealed that NGC but not TSV01 suppressed STAT-1 and STAT-2 activation in response to type I IFN (alpha and beta). However, these two strains did not differ in their response to type II IFN (gamma). Although unable to suppress IFN signalling, TSV01 infection caused a weaker IFN-beta induction compared with NGC, suggesting an alternative mechanism of innate immune escape. We extended our study to clinical isolates of various serotypes and found that while MY10245 (DEN2) and MY22713 (DEN4) could suppress the IFN response in a similar fashion to NGC, three other strains of dengue [EDEN167 (DEN1), MY02569 (DEN1) and MY10340 (DEN2)] were unable to suppress the IFN response, suggesting that this difference is strain-dependent but not serotype-specific. Our report indicates the existence of a strain-specific virulence factor that may impact on disease severity.
    Matched MeSH terms: Host-Pathogen Interactions
  14. Wong HV, Vythilingam I, Sulaiman WY, Lulla A, Merits A, Chan YF, et al.
    Am J Trop Med Hyg, 2016 Jan;94(1):182-6.
    PMID: 26598564 DOI: 10.4269/ajtmh.15-0318
    Vertical transmission may contribute to the maintenance of arthropod-borne viruses, but its existence in chikungunya virus (CHIKV) is unclear. Experimental vertical transmission of infectious clones of CHIKV in Aedes aegypti mosquitoes from Malaysia was investigated. Eggs and adult progeny from the second gonotrophic cycles of infected parental mosquitoes were tested. Using polymerase chain reaction (PCR), 56.3% of pooled eggs and 10% of adult progeny had detectable CHIKV RNA, but no samples had detectable infectious virus by plaque assay. Transfected CHIKV RNA from PCR-positive eggs did not yield infectious virus in BHK-21 cells. Thus, vertical transmission of viable CHIKV was not demonstrated. Noninfectious CHIKV RNA persists in eggs and progeny of infected Ae. aegypti, but the mechanism and significance are unknown. There is insufficient evidence to conclude that vertical transmission exists in CHIKV, as positive results reported in previous studies were almost exclusively based only on viral RNA detection.
    Matched MeSH terms: Host-Pathogen Interactions
  15. Huda-Shakirah AR, Kee YJ, Wong KL, Zakaria L, Mohd MH
    Sci Rep, 2021 02 16;11(1):3907.
    PMID: 33594187 DOI: 10.1038/s41598-021-83551-z
    This study aimed to characterize the new fungal disease on the stem of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia, which is known as gray blight through morphological, molecular and pathogenicity analyses. Nine fungal isolates were isolated from nine blighted stems of H. polyrhizus. Based on morphological characteristics, DNA sequences and phylogeny (ITS, TEF1-α, and β-tubulin), the fungal isolates were identified as Diaporthe arecae, D. eugeniae, D. hongkongensis, D. phaseolorum, and D. tectonendophytica. Six isolates recovered from the Cameron Highlands, Pahang belonged to D. eugeniae (DF1 and DF3), D. hongkongensis (DF9), D. phaseolorum (DF2 and DF12), and D. tectonendophytica (DF7), whereas three isolates from Bukit Kor, Terengganu were recognized as D. arecae (DFP3), D. eugeniae (DFP4), and D. tectonendophytica (DFP2). Diaporthe eugeniae and D. tectonendophytica were found in both Pahang and Terengganu, D. phaseolorum and D. hongkongensis in Pahang, whereas D. arecae only in Terengganu. The role of the Diaporthe isolates in causing stem gray blight of H. polyrhizus was confirmed. To date, only D. phaseolorum has been previously reported on Hylocereus undatus. This is the first report on D. arecae, D. eugeniae, D. hongkongensis, D. phaseolorum, and D. tectonendophytica causing stem gray blight of H. polyrhizus worldwide.
    Matched MeSH terms: Host-Pathogen Interactions*
  16. Thio CL, Yusof R, Ashrafzadeh A, Bahari S, Abdul-Rahman PS, Karsani SA
    PLoS One, 2015;10(6):e0129033.
    PMID: 26083627 DOI: 10.1371/journal.pone.0129033
    The Chikungunya virus (CHIKV) is an arthropod borne virus. In the last 50 years, it has been the cause of numerous outbreaks in tropical and temperate regions, worldwide. There is limited understanding regarding the underlying molecular mechanisms involved in CHIKV replication and how the virus interacts with its host. In the present study, comparative proteomics was used to identify secreted host proteins that changed in abundance in response to early CHIKV infection. Two-dimensional gel electrophoresis was used to analyse and compare the secretome profiles of WRL-68 cells infected with CHIKV against mock control WRL-68 cells. The analysis identified 25 regulated proteins in CHIKV infected cells. STRING network analysis was then used to predict biological processes that may be affected by these proteins. The processes predicted to be affected include signal transduction, cellular component and extracellular matrix (ECM) organization, regulation of cytokine stimulus and immune response. These results provide an initial view of CHIKV may affect the secretome of infected cells during early infection. The results presented here will compliment earlier results from the study of late host response. However, functional characterization will be necessary to further enhance our understanding of the roles played by these proteins in the early stages of CHIKV infection in humans.
    Matched MeSH terms: Host-Pathogen Interactions
  17. Azizi P, Rafii MY, Mahmood M, Abdullah SN, Hanafi MM, Nejat N, et al.
    PLoS One, 2015;10(5):e0126188.
    PMID: 26001124 DOI: 10.1371/journal.pone.0126188
    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world's most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties.
    Matched MeSH terms: Host-Pathogen Interactions/genetics*
  18. Rasheed ZBM, Lee YS, Kim SH, Rai RK, Ruano CSM, Anucha E, et al.
    Front Immunol, 2020;11:1899.
    PMID: 32983111 DOI: 10.3389/fimmu.2020.01899
    Background: Infection/inflammation is an important causal factor in spontaneous preterm birth (sPTB). Most mechanistic studies have concentrated on the role of bacteria, with limited focus on the role of viruses in sPTB. Murine studies support a potential multi-pathogen aetiology in which a double or sequential hit of both viral and bacterial pathogens leads to a higher risk preterm labour. This study aimed to determine the effect of viral priming on bacterial induced inflammation in human in vitro models of ascending and haematogenous infection. Methods: Vaginal epithelial cells, and primary amnion epithelial cells and myocytes were used to represent cell targets of ascending infection while interactions between peripheral blood mononuclear cells (PBMCs) and placental explants were used to model systemic infection. To model the effect of viral priming upon the subsequent response to bacterial stimuli, each cell type was stimulated first with a TLR3 viral agonist, and then with either a TLR2 or TLR2/6 agonist, and responses compared to those of each agonist alone. Immunoblotting was used to detect cellular NF-κB, AP-1, and IRF-3 activation. Cellular TLR3, TLR2, and TLR6 mRNA was quantified by RT-qPCR. Immunoassays were used to measure supernatant cytokine, chemokine and PGE2 concentrations. Results: TLR3 ("viral") priming prior to TLR2/6 agonist ("bacterial") exposure augmented the pro-inflammatory, pro-labour response in VECs, AECs, myocytes and PBMCs when compared to the effects of agonists alone. In contrast, enhanced anti-inflammatory cytokine production (IL-10) was observed in placental explants. Culturing placental explants in conditioned media derived from PBMCs primed with a TLR3 agonist enhanced TLR2/6 agonist stimulated production of IL-6 and IL-8, suggesting a differential response by the placenta to systemic inflammation compared to direct infection as a result of haematogenous spread. TLR3 agonism generally caused increased mRNA expression of TLR3 and TLR2 but not TLR6. Conclusion: This study provides human in vitro evidence that viral infection may increase the susceptibility of women to bacterial-induced sPTB. Improved understanding of interactions between viral and bacterial components of the maternal microbiome and host immune response may offer new therapeutic options, such as antivirals for the prevention of PTB.
    Matched MeSH terms: Host-Pathogen Interactions
  19. Jahromi MZ, Bello MB, Abdolmaleki M, Yeap SK, Hair-Bejo M, Omar AR
    Dev Comp Immunol, 2018 10;87:116-123.
    PMID: 29886054 DOI: 10.1016/j.dci.2018.06.004
    To gain insights into the role of CD3-/28.4+ intraepithelial lymphocytes-natural killer (CD3-/28.4+IEL-NK) cells during infectious bursal disease virus (IBDV) infection, characterisation of the cells was performed following infection with different strains of the virus. In vitro treatment with IL-18 or ionomycin/PMA successfully stimulated and activated the cells via a significant increase in the expression of CD69, B-Lec, CHIR-AB1 and NK-lysin. Similarly, chickens infected with the vaccine strain of IBDV also up-regulated the expression of CD69, B-Lec, CHIR-AB1 and NK-lysin in CD3-/28.4+ IEL-NK cells up to 3 days post infection (dpi) and down-regulated the expression of the inhibitory receptor B-NK at 3 dpi. On the contrary, infection with the very virulent IBDV (vvIBDV) strain lead to a reduced activation of the cells by down-regulating the expression of the CD69, CHIR-AB1 and NK-lysin especially at 1 dpi. These findings altogether demonstrate the differential activation of CD3-/28.4+IEL-NK cells in chicken following infection with the vaccine or very virulent strains of IBDV. The study therefore provides an important clue into the differential pathogenesis of IBDV infection in chicken. Further studies are however required to determine the functional importance of these findings during IBDV vaccination and infection.
    Matched MeSH terms: Host-Pathogen Interactions
  20. Mohd Isa F, Ahmed Al-Haj N, Mat Isa N, Ideris A, Powers C, Oladapo O, et al.
    PMID: 31837598 DOI: 10.1016/j.cimid.2019.101399
    Among different inbred chickens' lines, we previously showed that lines P and N of Institute for Animal Health, Compton, UK are the most susceptible and the least affected lines, respectively, following infection with very virulent infectious bursal disease virus (vvIBDV). In this study, the differential expressions of 29 different immune-related genes were characterized. Although, birds from both lines succumbed to infection, line P showed greater bursal lesion scores and higher viral copy numbers compared to line N. Interestingly, line N showed greater down-regulation of B cell related genes (BLNK, TNFSF13B and CD72) compared to line P. While up-regulation of T-cell related genes (CD86 and CTLA4) and Th1 associated cytokines (IFNG, IL2, IL12A and IL15) were documented in both lines, the expression levels of these genes were different in the two lines. Meanwhile, the expression of IFN-related genes IFNB, STAT1, and IRF10, but not IRF5, were up-regulated in both lines. The expression of pro-inflammatory cytokines (IL1B, IL6, IL18, and IL17) and chemokines (CXCLi2, CCL4, CCL5 and CCR5) were up-regulated in both lines with greater increase documented in line P compared to line N. Strikingly, the expression of IL12B was detected only in line P whilst the expression of IL15RA was detected only in line N. In conclusion, the bursal immunopathology of IBDV correlates more with expression of proinflammatory response related genes and does not related to expression of B-cell related genes.
    Matched MeSH terms: Host-Pathogen Interactions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links