Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Subramaniam, Sreeramanan, Balasubramaniam, Vinod, Poobathy, Ranjetta, Sreenivasan, Sasidharan, Rathinam, Xavier
    Trop Life Sci Res, 2009;20(1):-.
    MyJurnal
    An early step in the Agrobacterium-mediated transformation of Phalaenopsis violacea orchid was investigated to elucidate the plant-bacterium interaction. Directed movement in response to chemical attractants is of crucial importance to Agrobacterium tumefaciens strains. Chemotaxis of A. tumefaciens strains (EHA 101 and 105) towards wounded orchid tissues has been studied by using swarm agar plates. The results obtained indicate a minor role for chemotaxis in determining host specificity and suggest that it could not be responsible for the absence of tumourigenesis in P. violacea orchid under natural conditions. The spectrometric GUS and green fluorescent protein (GFP) assays provided information on the amount of inoculated A. tumefaciens that effectively bound to various orchid tissues. It can be concluded that, at least during the two early steps of interaction, A. tumefaciens appears to be compatible with P. violacea, indicating a potential basis for genetic transformation.
    Matched MeSH terms: Orchidaceae
  2. Chen Y, Huang J, Yeap ZQ, Zhang X, Wu S, Ng CH, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2018 Jun 15;199:271-282.
    PMID: 29626818 DOI: 10.1016/j.saa.2018.03.061
    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner.
    Matched MeSH terms: Orchidaceae/chemistry*
  3. Wettewa E, Wallace LE
    Mol Phylogenet Evol, 2021 04;157:107070.
    PMID: 33421614 DOI: 10.1016/j.ympev.2021.107070
    Platanthera is one of the largest genera of temperate orchids in the Holarctic and exemplifies a lineage that has adaptively radiated into diverse habitats within North America, Asia, Europe, North Africa, Borneo, and Sarawak. Major centers of diversity in this genus are North America and eastern Asia. Despite its diversity, a thorough phylogenetic hypothesis for the genus is lacking because no studies have yet sampled taxa exhaustively or developed a robust molecular toolkit. While there is strong evidence that suggests monophyly of subgenus Limnorchis, most taxa in this group have not been included in a phylogenetic analysis. In this study, we developed a new toolkit for Platanthera consisting of genomic information from 617 low-copy nuclear loci. Using a targeted enrichment approach, we collected high-throughput sequence data in 23 accessions of nine of the 12 diploid species of subgenus Limnorchis and outgroup species across Platanthera. A maximum likelihood analysis resolved a strongly supported monophyletic clade for subgenus Limnorchis. Ancestral biogeographic reconstruction indicated that subgenus Limnorchis originated in western North America ca. 3-4.5 Mya from an ancestor that was widespread in western North America and eastern Asia and subsequently diversified in western North America, followed by dispersal of some species to eastern North America. Our results indicate complex biogeographic connections between Asia and North America, and therefore it suggests that Platanthera is a suitable system to test biogeographic hypotheses over time and space in the Holarctic. Our results are also expected to facilitate further study of diversification and biogeographic spread across Platanthera and lay the groundwork for understanding independent origins, biogeography, and morphological diversification of polyploid species within subgenus Limnorchis.
    Matched MeSH terms: Orchidaceae
  4. Rodrigues, K. F., Yeoh, K. A., Kumar, S. V.
    MyJurnal
    Geographically isolated populations of endemic orchids have evolved and adapted to an existence within specifi c ecological niches. These populations are highly susceptible to anthropogenic
    infl uences on their microhabitats. The primary objective of conservation programs is the restoration of endangered populations to their ecologically sustainable levels, and the fi rst stage in the process of conservation involves estimation of molecular diversity at the level of the population. The approach described in this article involves the application of RAPD, Microsatellites and Chloroplast DNA markers for the characterization of the genetic structure of Paphiopedilum rothschildianum and Phalaenopsis gigantea, two endangered and endemic orchids of Sabah. This study has isolated a total of 96 microsatellite loci in P. rothschildianum and P. gigantea, 42 specifi c primer pairs have been designed for amplifi cation of microsatellite loci and are currently being applied to screen the breeding pools. The Chloroplast DNA regions amplifi ed by the primer pairs trnH-psbA and trnL-trnF exhibit distinct polymorphisms and can be used to establish phylogenetic
    relationships. The ability of microsatellite loci to cross-amplify selected varieties of orchids has been determined. The molecular markers developed will be applied to estimate population diversity
    levels and to formulate long-term management strategies for the conservation of endangered species of orchids of Sabah.
    Matched MeSH terms: Orchidaceae
  5. Zhou JN, Lin BR, Shen HF, Pu XM, Chen ZN, Feng JJ
    Plant Dis, 2012 May;96(5):760.
    PMID: 30727539 DOI: 10.1094/PDIS-11-11-0942
    Phalaenopsis orchids, originally from tropical Asia, are mainly planted in Thailand, Singapore, Malaysia, the Philippines, and Taiwan and have gained popularity from consumers all over the world. The cultivation area of Phalaenopsis orchids has been rising and large-scale bases have been established in mainland China, especially South China because of suitable environmental conditions. In September 2011, a soft rot of Phalaenopsis aphrodita was found in a Phalaenopsis planting base in Guangzhou with an incidence of ~15%. Infected plants initially showed water-soaked, pale-to-dark brown pinpoint spots on leaves that were sometimes surrounded by a yellow halo. Spots expanded rapidly with rising humidity and temperatures, and in a few days, severely extended over the blade with a light tan color and darker brown border. Lesions decayed with odorous fumes and tissues collapsed with inclusions exuding. The bacterium advanced to the stem and pedicle. Finally, leaves became papery dry and the pedicles lodged. Six diseased samples were collected, and bacteria were isolated from the edge of symptomatic tissues after sterilization in 0.3% NaOCl for 10 min, rinsing in sterile water three times, and placing on nutrient agar for culture. Twelve representative isolates were selected for further characterization. All strains were gram negative, grew at 37°C, were positive for indole production, and utilized malonate, glucose, and sucrose but not glucopyranoside, trehalose, or palatinose. Biolog identification (version 4.20.05, Hayward, CA) was performed and Pectobacterium chrysanthemi (SIM 0.868) was confirmed for the tested isolates (transfer to genus Dickeya). PCR was used to amplify the 16S rDNAgene with primers 27f and 1492r, dnaX gene with primers dnaXf and dnaXr (3), and gyrB gene with primers gyrBf (5'-GAAGGYAAAVTKCATCGTCAGG-3') and gyrB-r1 (5'-TCARATATCRATATTCGCYGCTTTC-3') designed on the basis of the published gyrB gene sequences of genus Dickeya. BLASTn was performed online, and phylogeny trees (100% bootstrap values) were created by means of MEGA 5.05 for these gene sequences, respectively. Results commonly showed that the representative tested strain, PA1, was most homologous to Dickeya dieffenbachiae with 98% identity for 16S rDNA(JN940859), 97% for dnaX (JN989971), and 96% for gyrB (JN971031). Thus, we recommend calling this isolate D. dieffenbachiae PA1. Pathogenicity tests were conducted by injecting 10 P. aphrodita seedlings with 100 μl of the bacterial suspension (1 × 108 CFU/ml) and another 10 were injected with 100 μl of sterile water as controls. Plants were inoculated in a greenhouse at 28 to 32°C and 90% relative humidity. Soft rot symptoms were observed after 2 days on the inoculated plants, but not on the control ones. The bacterium was isolated from the lesions and demonstrated identity to the inoculated plant by the 16S rDNA sequence comparison. Previously, similar diseases of P. amabilis were reported in Tangshan, Jiangsu, Zhejiang, and Wuhan and causal agents were identified as Erwinia spp. (2), Pseudomonas grimontii (1), E. chrysanthemi, and E. carotovora subsp. carovora (4). To our knowledge, this is the first report of D. dieffenbachiae causing soft rot disease on P. aphrodita in China. References: (1) X. L. Chu and B. Yang. Acta Phytopathol. Sin. 40:90, 2010. (2) Y. M. Li et al. J. Beijing Agric. Coll. 19:41, 2004. (3) M. Sławiak et al. Eur. J. Plant Pathol. 125:245, 2009. (4) Z. Y. Wu et al. J. Zhejiang For. Coll. 27:635, 2010.
    Matched MeSH terms: Orchidaceae
  6. Lee YI, Yap JW, Izan S, Leitch IJ, Fay MF, Lee YC, et al.
    BMC Genomics, 2018 Aug 02;19(1):578.
    PMID: 30068293 DOI: 10.1186/s12864-018-4956-7
    BACKGROUND: Satellite DNA is a rapidly diverging, largely repetitive DNA component of many eukaryotic genomes. Here we analyse the evolutionary dynamics of a satellite DNA repeat in the genomes of a group of Asian subtropical lady slipper orchids (Paphiopedilum subgenus Parvisepalum and representative species in the other subgenera/sections across the genus). A new satellite repeat in Paphiopedilum subgenus Parvisepalum, SatA, was identified and characterized using the RepeatExplorer pipeline in HiSeq Illumina reads from P. armeniacum (2n = 26). Reconstructed monomers were used to design a satellite-specific fluorescent in situ hybridization (FISH) probe. The data were also analysed within a phylogenetic framework built using the internal transcribed spacer (ITS) sequences of 45S nuclear ribosomal DNA.

    RESULTS: SatA comprises c. 14.5% of the P. armeniacum genome and is specific to subgenus Parvisepalum. It is composed of four primary monomers that range from 230 to 359 bp and contains multiple inverted repeat regions with hairpin-loop motifs. A new karyotype of P. vietnamense (2n = 28) is presented and shows that the chromosome number in subgenus Parvisepalum is not conserved at 2n = 26, as previously reported. The physical locations of SatA sequences were visualised on the chromosomes of all seven Paphiopedilum species of subgenus Parvisepalum (2n = 26-28), together with the 5S and 45S rDNA loci using FISH. The SatA repeats were predominantly localisedin the centromeric, peri-centromeric and sub-telocentric chromosome regions, but the exact distribution pattern was species-specific.

    CONCLUSIONS: We conclude that the newly discovered, highly abundant and rapidly evolving satellite sequence SatA is specific to Paphiopedilum subgenus Parvisepalum. SatA and rDNA chromosomal distributions are characteristic of species, and comparisons between species reveal that the distribution patterns generate a strong phylogenetic signal. We also conclude that the ancestral chromosome number of subgenus Parvisepalum and indeed of all Paphiopedilum could be either 2n = 26 or 28, if P. vietnamense is sister to all species in the subgenus as suggested by the ITS data.

    Matched MeSH terms: Orchidaceae/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links