Displaying publications 21 - 32 of 32 in total

Abstract:
Sort:
  1. Ismail NZ, Md Saad S, Adebayo IA, Md Toha Z, Abas R, Mohamad Zain NN, et al.
    Environ Sci Pollut Res Int, 2022 Nov;29(54):81685-81702.
    PMID: 35737268 DOI: 10.1007/s11356-022-20858-y
    Clinacanthus nutans dichloromethane fraction (CN-Dcm) extract has previously been proven to suppress breast cancer (MCF7) cell proliferation. Despite this, the extrinsic and intrinsic apoptosis mechanisms involved in C. nutans extract-treated MCF7 cells are still unknown. This study was intended to subfractionate CN-Dcm extract using column chromatography and analyse the treated MCF7 cells using the CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay, Annexin V/propidium iodide (PI) assay, western blot, and reverse transcription-qualitative polymerase chain reaction (RT-qPCR). Out of nine subfraction extracts (SF1 to SF9), SF2 extract strongly inhibited MCF7 cells with the lowest IC50 value (23.51 ± 1.00 µg/mL) and substantially induced apoptosis in the MCF7 cells. In treated MCF7 cells, SF2 extract significantly upregulated the expression of P53, BAX, BID, caspase-8, caspase-9, and caspase-3, while downregulating the expression of BCL2. The presence of potential bioactive chemical compounds in the SF2 extract was identified using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Thus, the SF2 extract has the potential to induce apoptosis in MCF7 cells through intrinsic and extrinsic pathways.
    Matched MeSH terms: Propidium
  2. Aziz MY, Omar AR, Subramani T, Yeap SK, Ho WY, Ismail NH, et al.
    Oncol Lett, 2014 May;7(5):1479-1484.
    PMID: 24765160
    Damnacanthal, an anthraquinone compound, is isolated from the roots of Morinda citrifolia L. (noni), which has been used for traditional therapy in several chronic diseases, including cancer. Although noni has long been consumed in Asian and Polynesian countries, the molecular mechanisms by which it exerts several benefits are starting to emerge. In the present study, the effect of damnacanthal on MCF-7 cell growth regulation was investigated. Treatment of MCF-7 cells with damnacanthal for 72 h indicated an antiproliferative activity. The MTT method confirmed that damnacanthal inhibited the growth of MCF-7 cells at the concentration of 8.2 μg/ml for 72 h. In addition, the drug was found to induce cell cycle arrest at the G1 checkpoint in MCF-7 cells by cell cycle analysis. Damnacanthal induced apoptosis, determined by Annexin V-fluorescein isothiocyanate/propidium iodide (PI) dual-labeling, acridine-orange/PI dyeing and caspase-7 expression. Furthermore, damnacanthal-mediated apoptosis involves the sustained activation of p21, leading to the transcription of p53 and the Bax gene. Overall, the present study provided significant evidence demonstrating that p53-mediated damnacanthal induced apoptosis through the activation of p21 and caspase-7.
    Matched MeSH terms: Propidium
  3. Mohan S, Bustamam A, Ibrahim S, Al-Zubairi AS, Aspollah M, Abdullah R, et al.
    PMID: 21785623 DOI: 10.1093/ecam/neq010
    The plant Typhonium flagelliforme, commonly known as "rodent tuber" in Malaysia, is often used as a health supplement and traditional remedy for alternative cancer therapies, including leukemia. This study aimed to evaluate in vitro anti-leukemic activity of dichloromethane extract/fraction number 7 (DCM/F7) from T. flagelliforme tuber on human T4 lymphoblastoid (CEMss) cell line. The DCM extract of tuber has been fractionated by column chromatography. The obtained fractions were evaluated for its cytotoxicity toward CEMss cells as well as human primary blood lymphocytes (PBLs). Assessment of apoptosis produced by the most active fraction was evaluated by various microscopic techniques and further confirmation of apoptosis was done by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Phytochemical screening was done by gas chromatography-mass spectrometry (GC-MS). The results shows that 7 out of 12 fractions showed significant cytotoxicity against the selected cell line CEMss, in which fractions DCM/F7, DCM/F11 and DCM/F12 showed exceptional activity with 3, 5 and 6.2 μg ml(-1), respectively. Further studies in the non-cancerous PBL exhibited significant selectivity of DCM/F7 compared to other fractions. Cytological observations showed chromatin condensation, cell shrinkage, abnormalities of cristae, membrane blebbing, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double-staining of acridine orange (AO)/propidium iodide (PI), SEM and TEM. In addition, DCM/F7 has increased the cellular DNA breaks on treated cells. GC-MS revealed that DCM/F7 contains linoleic acid, hexadecanoic acid and 9-hexadecanoic acid. The present results indicate that T. flagelliforme possess a valuable anti-leukemic effect and was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
    Matched MeSH terms: Propidium
  4. Tan BL, Norhaizan ME, Chan LC
    PMID: 29977314 DOI: 10.1155/2018/6578648
    Manilkara zapota (L.) P. Royen (family: Sapotaceae) is commonly called sapodilla, or locally known as ciku. The detailed mechanisms underlying Manilkara zapota leaf methanol extract against HeLa human cervical cancer cells have yet to be investigated. Therefore, our present study is designed to investigate the ability to induce apoptosis and the underlying mechanisms of Manilkara zapota leaf methanol extract inducing cytotoxicity in HeLa cells. The apoptotic cell death was assessed using Annexin V-propidium iodide staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential activities were measured using dichlorodihydrofluorescein diacetate and MitoLite Orange, respectively, by NovoCyte Flow Cytometer. Bax and Bcl-2 expression were evaluated using Enzyme-Linked Immunosorbent Assay. Caspase-3 activity was determined using a colorimetric assay. The associated biological interaction pathways were evaluated using quantitative real-time PCR. Our data showed that HeLa cells were relatively more sensitive to Manilkara zapota leaf methanol extract than other cancer cell lines studied. Overall analyses revealed that Manilkara zapota leaf methanol extract can inhibit the viability of HeLa cells, induce mitochondrial ROS generation, and inhibit nuclear factor-kappa B (NF-κB) and epidermal growth factor receptor (EGFR) transcriptional activities. Our results suggested that Manilkara zapota leaf methanol extract might represent a potential anticervical cancer agent.
    Matched MeSH terms: Propidium
  5. Aravind SR, Joseph MM, George SK, Dileep KV, Varghese S, Rose-James A, et al.
    Int J Biochem Cell Biol, 2015 Feb;59:153-66.
    PMID: 25541375 DOI: 10.1016/j.biocel.2014.11.019
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive target for cancer therapy due to its ability to selectively induce apoptosis in cancer cells, without causing significant toxicity in normal tissues. We previously reported that galactoxyloglucan (PST001) possesses significant antitumor and immunomodulatory properties. However, the exact mechanism in mediating this anticancer effect is unknown. This study, for the first time, indicated that PST001 sensitizes non-small cell lung cancer (A549) and nasopharyngeal (KB) cells to TRAIL-mediated apoptosis. In vitro studies suggested that PST001 induced apoptosis primarily via death receptors and predominantly activated caspases belonging to the extrinsic apoptotic cascade. Microarray profiling of PST001 treated A549 and KB cells showed the suppression of survivin (BIRC5) and anti-apoptotic Bcl-2, as well as increased cytochrome C. TaqMan low density array analysis of A549 cells also confirmed that the induction of apoptosis by the polysaccharide occurred through the TRAIL-DR4/DR5 pathways. This was finally confirmed by in silico analysis, which revealed that PST001 binds to TRAIL-DR4/DR5 complexes more strongly than TNF and Fas ligand-receptor complexes. In summary, our results suggest the potential of PST001 to be developed as an anticancer agent that not only preserves innate biological activity of TRAIL, but also sensitizes cancer cells to TRAIL-mediated apoptosis.
    Matched MeSH terms: Propidium/metabolism
  6. Ansari SA, Devi S, Tenguria S, Kumar A, Ahmed N
    Cytokine, 2014 Aug;68(2):110-7.
    PMID: 24767863 DOI: 10.1016/j.cyto.2014.03.006
    HP0986 protein of Helicobacter pylori has been shown to trigger induction of proinflammatory cytokines (IL-8 and TNF-α) through the activation of NF-κB and also to induce Fas mediated apoptosis of human macrophage cells (THP-1). In this study, we unravel mechanistic details of the biological effects of this protein in a murine macrophage environment. Up regulation of MCP-1 and TNF-α in HP0986-induced RAW 264.7 cells occurred subsequent to the activation and translocation of NF-κB to the cell nucleus. Further, HP0986 induced apoptosis of RAW 264.7 cells through Fas activation and this was in agreement with previous observations made with THP-1 cells. Our studies indicated activation of TNFR1 through interaction with HP0986 and this elicited the aforementioned responses independent of TLR2, TLR4 or TNFR2. We found that mouse TNFR1 activation by HP0986 facilitates formation of a complex comprising of TNFR1, TRADD and TRAF2, and this occurs upstream of NF-κB activation. Furthermore, FADD also forms a second complex, at a later stage, together with TNFR1 and TRADD, resulting in caspase-8 activation and thereby the apoptosis of RAW 264.7 cells. In summary, our observations reveal finer details of the functional activity of HP0986 protein in relation to its behavior in a murine macrophage cell environment. These findings reconfirm the proinflammatory and apoptotic role of HP0986 signifying it to be an important trigger of innate responses. These observations form much needed baseline data entailing future in vivo studies of the functions of HP0986 in a murine model.
    Matched MeSH terms: Propidium/metabolism
  7. Lee ST, Wong PF, Cheah SC, Mustafa MR
    PLoS One, 2011;6(4):e18915.
    PMID: 21541327 DOI: 10.1371/journal.pone.0018915
    Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells.
    Matched MeSH terms: Propidium/metabolism
  8. Ebrahimi Nigjeh S, Yusoff FM, Mohamed Alitheen NB, Rasoli M, Keong YS, Omar AR
    Biomed Res Int, 2013;2013:783690.
    PMID: 23509778 DOI: 10.1155/2013/783690
    Marine microalgae have been prominently featured in cancer research. Here, we examined cytotoxic effect and apoptosis mechanism of crude ethanol extracts of an indigenous microalga, Chaetoceros calcitrans (UPMAAHU10) on human breast cell lines. MCF-7 was more sensitive than MCF-10A with IC50 value of 3.00 ± 0.65, whilst the IC50 value of Tamoxifen against MCF-7 was 12.00 ± 0.52  μg/mL after 24 hour incubation. Based on Annexin V/Propidium iodide and cell cycle flow cytometry analysis, it was found that inhibition of cell growth by EEC on MCF-7 cells was through the induction of apoptosis without cell cycle arrest. The apoptotic cells at subG0/G1 phase in treated MCF-7 cells at 48 and 72 hours showed 34 and 16 folds increased compared to extract treated MCF-10A cells which showed only 6 and 7 folds increased at the same time points, respectively. Based on GeXP study, EEC induced apoptosis on MCF-7 cells via modulation of CDK2, MDM2, p21Cip1, Cyclin A2, Bax and Bcl-2. The EEC treated MCF-7 cells also showed an increase in Bax/Bcl-2 ratio that in turn activated the caspase-dependent pathways by activating caspase 7. Thus, marine microalga, Chaetoceros calcitrans may be considered a good candidate to be developed as a new anti-breast cancer drug.
    Matched MeSH terms: Propidium
  9. Jalal T, Natto HA, Wahab RA
    PMID: 33653245 DOI: 10.2174/1386207324666210302095557
    In recent biomedical research, the area of cancer and infectious diseases has a leading position in the utilization of medicinal plants as a source of drug discovery. Malaysia has a diversity and a large number of underutilized fruits that are rich in phenolic compounds. Artoarpus altilis consider an underutilized fruit that is rich in phenolic compounds. Methanol extracts of A. altilis have been previously found to contain a high content of antioxidant phytochemicals. The purpose of the study was to evaluate the cytotoxicity and toxicological effect of methanol fruit extracts against MCF-7 cells. To determine the least concentration that might kill or suppress the growth of the cancer cells was in a concentration-dependent manner approach. The variation in the cytotoxic activity among the extracts was indicated by determining the IC50 of each extract against cells at 72 h. The IC50 of the samples was measured using a trypan blue exclusion assay. The methanol extract of the pulp part showed the least inhibition concentration of 15.40±0.91 μg/mL on MCF-7 cells. In the study, the molecular mechanism of methanol extracts-induced apoptosis and cell cycle arrested in human cancer cells were investigated in a time-dependent-manners approach by using flow cytometry. The treated cells were stained with nexin to detect early and late apoptosis and with propidium iodide (PI) for cell cycle arrest associated with the DNA fragmentation, various cell arrests occurred at G1/S, S, and G2/M phases. Lastly, the gene expression analysis by (RT-qPCR) method was carried out by analyzing the expression of the gene of interest for the quantification of mRNA levels. Results after cells treated with IC50 were revealed by upregulating anti-apoptotic genes/downregulated of pro-apoptotic BCL-2 gene expressions were triggered the treated cells into CASPASE-3, intrinsic and extrinsic pathways. These findings suggest that the methanol extracts of three parts of A. altilis fruit have potential anticancer activity against MCF-7 cells mainly the pulp part of the fruit.
    Matched MeSH terms: Propidium
  10. Tan BL, Norhaizan ME, Chan LC
    PMID: 30519270 DOI: 10.1155/2018/7826576
    Manilkara zapota (L.) P. Royen, called sapodilla, or locally known as ciku, belongs to the family Sapotaceae. We found that Manilkara zapota leaf water extract has cytotoxic effect against human hepatocellular carcinoma (HepG2) cell line in our earlier study. Therefore, this study aimed to explore the anticancer properties of Manilkara zapota leaf water extract in HepG2 cells. We also aimed to unravel yet undiscovered mechanisms and identified several expressed genes whose functions in cytotoxicity activity of Manilkara zapota leaf water extract in HepG2 cells have not been well-studied. The apoptosis and intracellular reactive oxygen species (ROS) activities were analyzed using Annexin V-propidium iodide staining and dichlorodihydrofluorescein diacetate, respectively, by NovoCyte Flow Cytometer. Bax and Bcl-2 expression were assessed using Enzyme-Linked Immunosorbent Assay. The associated molecular pathways were evaluated by quantitative real-time PCR. Overall analyses revealed that Manilkara zapota leaf water extract can increase percentage of early apoptotic cells, induce the formation of ROS, upregulate c-Jun N-terminal kinase 1 (JNK1) and inducible nitric oxide synthase (iNOS), and reduce Akt1 and vascular endothelial growth factor A (VEGFA) transcriptional activities. Our data suggest that Manilkara zapota leaf water extract can suppress the growth of HepG2 cells via modulation of ERK1/2/Akt1/JNK1 transcriptional expression.
    Matched MeSH terms: Propidium
  11. Hasan SI, Mohd Ashari NS, Mohd Daud K, Che Husin CM
    Int J Rheum Dis, 2013 Aug;16(4):430-6.
    PMID: 23992264 DOI: 10.1111/1756-185X.12062
    BACKGROUND: The ethiopathogenesis of increased apoptosis of lymphocytes in systemic lupus erythematosus (SLE) is still incompletely understood but anti-C1q autoantibodies have been shown to induce apoptosis in lymphocytes from healthy donors and certain cell lines.
    AIM: This study was undertaken to investigate the relationship between peripheral lymphocyte apoptosis and serum levels of anti-C1q autoantibodies in SLE patients.
    METHODS: The sera of 124 patients with SLE involving 62 active SLE and 62 inactive SLE, fulfilling America College of Rheumatology (ACR) classification criteria for SLE (1997) were incubated with peripheral blood lymphocytes of healthy donors. The results were compared with 124 sex- and age-matched normal controls. Apoptotic lymphocytes (AL) were detected by flow cytometry using annexin V and propidium iodide binding. Anti-C1q autoantibodies were detected by an enzyme-linked immunoassay kit for all SLE patients.
    RESULTS: Results demonstrated that the percentage of AL in the peripheral blood of active SLE patients was significantly higher (n = 62, 34.95 ± 12.78%) than that of the inactive SLE patients (n = 62, 30.69 ± 10.13%, P = 0.042, 95%CI = 0.16-8.36) and normal controls (n = 124, 27.92 ± 10.22%, P = 0.001, 95%CI = 3.33-10.73). The percentage of AL significantly correlated with serum levels of anti-C1q autoantibodies in the active SLE patients (r = 0.263, P = 0.039) but not in the inactive SLE patients (r = 0.170, P = 0.185).
    CONCLUSION: The results of this study suggest that increased serum levels of anti-C1q autoantibodies are responsible for apoptosis and may play a pathogenic role in SLE patients, especially in active disease.
    KEYWORDS: anti-C1q; apoptosis; flowcytometry; systemic lupus erythematosus
    Study site: Medical outpatient clinic and medical wards, Hospital Universiti Sains Malaysia (HUSM), Kelantan, Malaysia
    Matched MeSH terms: Propidium
  12. Subramani T, Yeap SK, Ho WY, Ho CL, Omar AR, Aziz SA, et al.
    J Cell Mol Med, 2014 Feb;18(2):305-13.
    PMID: 24266867 DOI: 10.1111/jcmm.12188
    Vitamin C is generally thought to enhance immunity and is widely taken as a supplement especially during cancer treatment. Tamoxifen (TAM) has both cytostatic and cytotoxic properties for breast cancer. TAM engaged mitochondrial oestrogen receptor beta in MCF-7 cells and induces apoptosis by activation of pro-caspase-8 followed by downstream events, including an increase in reactive oxygen species and the release of pro-apoptotic factors from the mitochondria. In addition to that, TAM binds with high affinity to the microsomal anti-oestrogen-binding site and inhibits cholesterol esterification at therapeutic doses. This study aimed to investigate the role of vitamin C in TAM-mediated apoptosis. Cells were loaded with vitamin C by exposure to dehydroascorbic acid, thereby circumventing in vitro artefacts associated with the poor transport and pro-oxidant effects of ascorbic acid. Pre-treatment with vitamin C caused a dose-dependent attenuation of cytotoxicity, as measured by acridine-orange/propidium iodide (AO/PI) and Annexin V assay after treatment with TAM. Vitamin C dose-dependently protected cancer cells against lipid peroxidation caused by TAM treatment. By real-time PCR analysis, an impressive increase in FasL and tumour necrosis factor-α (TNF-α) mRNA was detected after TAM treatment. In addition, a decrease in mitochondrial transmembrane potential was observed. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response.
    Matched MeSH terms: Propidium
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links