Displaying publications 21 - 40 of 146 in total

Abstract:
Sort:
  1. Alam T, Islam MT, Ullah MA, Rahmatillah R, Aheieva K, Lap CC, et al.
    PLoS One, 2018;13(11):e0205587.
    PMID: 30427842 DOI: 10.1371/journal.pone.0205587
    A compact UHF antenna has been presented in this paper for nanosatellite space mission. A square ground plane with slotted rectangular radiating element have been used. Coaxial probe feeding is used to excite. The rectangular slot of the radiating patch is responsible for resonating at lower UHF bands. One of the square faces of the nanosatellite structure works as the ground plane for the slotted radiating element. The fabricated prototype of the proposed antenna has achieved an impedance bandwidth (S11< -10dB) of 7.0 MHz (398 MHz- 405 MHz) with small size of 97 mm× 90 mm radiating element. The overall ground plane size is 100 mm × 100 mm × 0.5 mm. The proposed antenna has achieved a gain of 1.18 dB with total efficiency of 62.5%. The proposed antenna addresses two design challenges of nanosatellite antenna, (a) assurance of the placement of solar panel beneath the radiating element; (b) providing about 50% open space for solar irradiance to pass onto the solar panel, enabling the solar panel to achieve up to 93.95% of power under of normal conditions.
    Matched MeSH terms: Wireless Technology/trends*
  2. Albahri OS, Albahri AS, Mohammed KI, Zaidan AA, Zaidan BB, Hashim M, et al.
    J Med Syst, 2018 Mar 22;42(5):80.
    PMID: 29564649 DOI: 10.1007/s10916-018-0943-4
    The new and ground-breaking real-time remote monitoring in triage and priority-based sensor technology used in telemedicine have significantly bounded and dispersed communication components. To examine these technologies and provide researchers with a clear vision of this area, we must first be aware of the utilised approaches and existing limitations in this line of research. To this end, an extensive search was conducted to find articles dealing with (a) telemedicine, (b) triage, (c) priority and (d) sensor; (e) comprehensively review related applications and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were checked for articles on triage and priority-based sensor technology in telemedicine. The retrieved articles were filtered according to the type of telemedicine technology explored. A total of 150 articles were selected and classified into two categories. The first category includes reviews and surveys of triage and priority-based sensor technology in telemedicine. The second category includes articles on the three-tiered architecture of telemedicine. Tier 1 represents the users. Sensors acquire the vital signs of the users and send them to Tier 2, which is the personal gateway that uses local area network protocols or wireless body area network. Medical data are sent from Tier 2 to Tier 3, which is the healthcare provider in medical institutes. Then, the motivation for using triage and priority-based sensor technology in telemedicine, the issues related to the obstruction of its application and the development and utilisation of telemedicine are examined on the basis of the findings presented in the literature.
    Matched MeSH terms: Wireless Technology
  3. Aldhaibani JA, Yahya A, Ahmad RB
    ScientificWorldJournal, 2014;2014:815720.
    PMID: 24672378 DOI: 10.1155/2014/815720
    The poor capacity at cell boundaries is not enough to meet the growing demand and stringent design which required high capacity and throughput irrespective of user's location in the cellular network. In this paper, we propose new schemes for an optimum fixed relay node (RN) placement in LTE-A cellular network to enhance throughput and coverage extension at cell edge region. The proposed approach mitigates interferences between all nodes and ensures optimum utilization with the optimization of transmitted power. Moreover, we proposed a new algorithm to balance the transmitted power of moving relay node (MR) over cell size and providing required SNR and throughput at the users inside vehicle along with reducing the transmitted power consumption by MR. The numerical analysis along with the simulation results indicates that an improvement in capacity for users is 40% increment at downlink transmission from cell capacity. Furthermore, the results revealed that there is saving nearly 75% from transmitted power in MR after using proposed balancing algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain.
    Matched MeSH terms: Wireless Technology*
  4. Ali I, Jamaluddin MH, Gaya A, Rahim HA
    Sensors (Basel), 2020 Jan 26;20(3).
    PMID: 31991889 DOI: 10.3390/s20030675
    In this paper, a dielectric resonator antenna (DRA) with high gain and wide impedance bandwidth for fifth-generation (5G) wireless communication applications is proposed. The dielectric resonator antenna is designed to operate at higher-order TEδ15x mode to achieve high antenna gain, while a hollow cylinder at the center of the DRA is introduced to improve bandwidth by reducing the quality factor. The DRA is excited by a 50Ω microstrip line with a narrow aperture slot. The reflection coefficient, antenna gain, and radiation pattern of the proposed DRAs are analyzed using the commercially available full-wave electromagnetic simulation tool CST Microwave Studio (CST MWS). In order to verify the simulation results, the proposed antenna structures were fabricated and experimentally validated. Measured results of the fabricated prototypes show a 10-dB return loss impedance bandwidth of 10.7% (14.3-15.9GHz) and 16.1% (14.1-16.5 GHz) for DRA1 and DRA2, respectively, at the operating frequency of 15 GHz. The results show that the designed antenna structure can be used in the Internet of things (IoT) for device-to-device (D2D) communication in 5G systems.
    Matched MeSH terms: Wireless Technology
  5. Ali MS, AbuZaiter A, Schlosser C, Bycraft B, Takahata K
    Sensors (Basel), 2014 Jul 10;14(7):12399-409.
    PMID: 25014100 DOI: 10.3390/s140712399
    This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF). The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA). The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit's resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.
    Matched MeSH terms: Wireless Technology/instrumentation*
  6. Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS
    J Med Syst, 2019 Jun 06;43(7):219.
    PMID: 31172296 DOI: 10.1007/s10916-019-1339-9
    This study presents a prioritisation framework for mobile patient monitoring systems (MPMSs) based on multicriteria analysis in architectural components. This framework selects the most appropriate system amongst available MPMSs for the telemedicine environment. Prioritisation of MPMSs is a challenging task due to (a) multiple evaluation criteria, (b) importance of criteria, (c) data variation and (d) unmeasurable values. The secondary data presented as the decision evaluation matrix include six systems (namely, Yale-National Aeronautics and Space Administration (NASA), advanced health and disaster aid network, personalised health monitoring, CMS, MobiHealth and NTU) as alternatives and 13 criteria (namely, supported number of sensors, sensor front-end (SFE) communication, SFE to mobile base unit (MBU) communications, display of biosignals on the MBU, storage of biosignals on the MBU, intra-body area network (BAN) communication problems, extra-BAN communication problems, extra-BAN communication technology, extra-BAN communication protocols, back-end system communication technology, intended geographic area of use, end-to-end security and reported trial problems) based on the architectural components of MPMSs. These criteria are adopted from the most relevant studies and are found to be applicable to this study. The prioritisation framework is developed in three stages. (1) The unmeasurable values of the MPMS evaluation criteria in the adopted decision evaluation matrix based on expert opinion are represented by using the best-worst method (BWM). (2) The importance of the evaluation criteria based on the architectural components of the MPMS is determined by using the BWM. (3) The VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is utilised to rank the MPMSs according to the determined importance of the evaluation criteria and the adopted decision matrix. For validation, mean ± standard deviation is used to verify the similarity of systematic prioritisations objectively. The following results are obtained. (1) The BWM represents the unmeasurable values of the MPMS evaluation criteria. (2) The BWM is suitable for weighing the evaluation criteria based on the architectural components of the MPMS. (3) VIKOR is suitable for solving the MPMS prioritisation problem. Moreover, the internal and external VIKOR group decision making are approximately the same, with the best MPMS being 'Yale-NASA' and the worst MPMS being 'NTU'. (4) For the objective validation, remarkable differences are observed between the group scores, which indicate the similarity of internal and external prioritisation results.
    Matched MeSH terms: Wireless Technology*
  7. Almazroi AA, Alqarni MA, Al-Shareeda MA, Manickam S
    PLoS One, 2023;18(10):e0292690.
    PMID: 37889892 DOI: 10.1371/journal.pone.0292690
    The role that vehicular fog computing based on the Fifth Generation (5G) can play in improving traffic management and motorist safety is growing quickly. The use of wireless technology within a vehicle raises issues of confidentiality and safety. Such concerns are optimal targets for conditional privacy-preserving authentication (CPPA) methods. However, current CPPA-based systems face a challenge when subjected to attacks from quantum computers. Because of the need for security and anti-piracy features in fog computing when using a 5G-enabled vehicle system, the L-CPPA scheme is proposed in this article. Using a fog server, secret keys are generated and transmitted to each registered car via a 5G-Base Station (5G-BS) in the proposed L-CPPA system. In the proposed L-CPPA method, the trusted authority, rather than the vehicle's Onboard Unit (OBU), stores the vehicle's master secret data to each fog server. Finally, the computation cost of the suggested L-CPPA system regards message signing, single verification and batch verification is 694.161 ms, 60.118 ms, and 1348.218 ms, respectively. Meanwhile, the communication cost is 7757 bytes.
    Matched MeSH terms: Wireless Technology
  8. Alshami IH, Ahmad NA, Sahibuddin S, Firdaus F
    Sensors (Basel), 2017 Aug 05;17(8).
    PMID: 28783047 DOI: 10.3390/s17081789
    The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS) differently, and peoples' presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS) based on: a dynamic radio map generator, RSS certainty technique and peoples' presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples' presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices.
    Matched MeSH terms: Wireless Technology
  9. Anisi MH, Abdullah AH, Razak SA, Ngadi MA
    Sensors (Basel), 2012 03 27;12(4):3964-96.
    PMID: 23443040 DOI: 10.3390/s120403964
    Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals.
    Matched MeSH terms: Wireless Technology*
  10. Anwar M, Abdullah AH, Altameem A, Qureshi KN, Masud F, Faheem M, et al.
    Sensors (Basel), 2018 Sep 26;18(10).
    PMID: 30261628 DOI: 10.3390/s18103237
    Recent technological advancement in wireless communication has led to the invention of wireless body area networks (WBANs), a cutting-edge technology in healthcare applications. WBANs interconnect with intelligent and miniaturized biomedical sensor nodes placed on human body to an unattended monitoring of physiological parameters of the patient. These sensors are equipped with limited resources in terms of computation, storage, and battery power. The data communication in WBANs is a resource hungry process, especially in terms of energy. One of the most significant challenges in this network is to design energy efficient next-hop node selection framework. Therefore, this paper presents a green communication framework focusing on an energy aware link efficient routing approach for WBANs (ELR-W). Firstly, a link efficiency-oriented network model is presented considering beaconing information and network initialization process. Secondly, a path cost calculation model is derived focusing on energy aware link efficiency. A complete operational framework ELR-W is developed considering energy aware next-hop link selection by utilizing the network and path cost model. The comparative performance evaluation attests the energy-oriented benefit of the proposed framework as compared to the state-of-the-art techniques. It reveals a significant enhancement in body area networking in terms of various energy-oriented metrics under medical environments.
    Matched MeSH terms: Wireless Technology
  11. Ashraf QM, Habaebi MH, Islam MR
    PLoS One, 2016;11(9):e0160311.
    PMID: 27583378 DOI: 10.1371/journal.pone.0160311
    Communication abilities of a wireless network decrease significantly in the presence of a jammer. This paper presents a reactive technique, to detect and locate the position of a jammer using a distributed collection of wireless sensor devices. We employ the theory of autonomic computing as a framework to design the same. Upon detection of a jammer, the affected nodes self-configure their power consumption which stops unnecessary waste of battery resources. The scheme then proceeds to determine the approximate location of the jammer by analysing the location of active nodes as well as the affected nodes. This is done by employing a circular curve fitting algorithm. Results indicate a high degree of accuracy in localizing a jammer has been achieved.
    Matched MeSH terms: Wireless Technology/instrumentation*
  12. Ashyap AYI, Elamin NIM, Dahlan SH, Abidin ZZ, See CH, Majid HA, et al.
    PLoS One, 2021;16(1):e0246057.
    PMID: 33508025 DOI: 10.1371/journal.pone.0246057
    A compact fabric antenna structure integrated with electromagnetic bandgap structures (EBGs) covering the desired frequency spectrum between 2.36 GHz and 2.40 GHz for Medical Body-Area Networks (MBANs), is introduced. The needs of flexible system applications, the antenna is preferably low-profile, compact, directive, and robust to the human body's loading effect have to be satisfied. The EBGs are attractive solutions for such requirements and provide efficient performance. In contrast to earlier documented EBG backed antenna designs, the proposed EBG behaved as shielding from the antenna to the human body, reduced the size, and acted as a radiator. The EBGs reduce the frequency detuning due to the human body and decrease the back radiation, improving the antenna efficiency. The proposed antenna system has an overall dimension of 46×46×2.4 mm3. The computed and experimental results achieved a gain of 7.2 dBi, a Front to Back Ratio (FBR) of 12.2 dB, and an efficiency of 74.8%, respectively. The Specific Absorption Rate (SAR) demonstrates a reduction of more than 95% compared to the antenna without EBGs. Moreover, the antenna performance robustness to human body loading and bending is also studied experimentally. Hence, the integrated antenna-EBG is a suitable candidate for many wearable applications, including healthcare devices and related applications.
    Matched MeSH terms: Wireless Technology*
  13. Aslina A. Bakar, Amirul A. Mustafa, Ahmad R. Razali, Norhayati Mutalib, Amirudin Ibrahim
    ESTEEM Academic Journal, 2020;16(2):75-87.
    MyJurnal
    This study aims to investigate the bending effects on the flexible wearable antenna by using copper nanowires and polydimethylsiloxane (PDMS). This project focuses on the bending effect on the proposed wearable antenna in the presence of skin tissue and at free space. The radiation characteristics were simulated and analyzed when the antenna was under flat and bent conditions. The performance result of return loss and radiation pattern (Efield and H-field) of proposed wearable antenna was analyzed. The material for the proposed antenna is designed to be flexible and wearable for the application of body-centric wireless communication (BCWCs) at the frequency of 2.45 GHz with the approval specifications of industrial, scientific and medical (ISM) band. Radiator for the proposed wearable antenna is fabricated using copper nanowire, and the antenna substrate is by using polydimethylsiloxane (PDMS). The performance result of the proposed wearable antenna was simulated by using CST microwave studio. From the simulated result for different bending angles, a conclusion was drawn that bending of structure can improve the impedance matching and return loss during the bent condition. However, the resonant frequency tends to shift as the antenna is bent up to 50°. At the critical angle of 70°, the frequency is shifted to a lower frequency.
    Matched MeSH terms: Wireless Technology
  14. Ayatollahitafti V, Ngadi MA, Mohamad Sharif JB, Abdullahi M
    PLoS One, 2016;11(1):e0146464.
    PMID: 26771586 DOI: 10.1371/journal.pone.0146464
    Body Area Networks (BANs) consist of various sensors which gather patient's vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol.
    Matched MeSH terms: Wireless Technology*
  15. Azim R, Islam MT, Misran N, Yatim B, Arshad H
    ScientificWorldJournal, 2014;2014:563830.
    PMID: 25133245 DOI: 10.1155/2014/563830
    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31-3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band.
    Matched MeSH terms: Wireless Technology/instrumentation*
  16. Azmi N, Kamarudin LM, Zakaria A, Ndzi DL, Rahiman MHF, Zakaria SMMS, et al.
    Sensors (Basel), 2021 Mar 08;21(5).
    PMID: 33800174 DOI: 10.3390/s21051875
    Seasonal crops require reliable storage conditions to protect the yield once harvested. For long term storage, controlling the moisture content level in grains is challenging because existing moisture measuring techniques are time-consuming and laborious as measurements are carried out manually. The measurements are carried out using a sample and moisture may be unevenly distributed inside the silo/bin. Numerous studies have been conducted to measure the moisture content in grains utilising dielectric properties. To the best of authors' knowledge, the utilisation of low-cost wireless technology operating in the 2.4 GHz and 915 MHz ISM bands such as Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) have not been widely investigated. This study focuses on the characterisation of 2.4 GHz Radio Frequency (RF) transceivers using ZigBee Standard and 868 to 915 MHz UHF RFID transceiver for moisture content classification and prediction using Artificial Neural Network (ANN) models. The Received Signal Strength Indicator (RSSI) from the wireless transceivers is used for moisture content prediction in rice. Four samples (2 kg of rice each) were conditioned to 10%, 15%, 20%, and 25% moisture contents. The RSSI from both systems were obtained and processed. The processed data is used as input to different ANNs models such as Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Random Forest, and Multi-layer Perceptron (MLP). The results show that the Random Forest method with one input feature (RSSI_WSN) provides the highest accuracy of 87% compared to the other four models. All models show more than 98% accuracy when two input features (RSSI_WSN and RSSI_TAG2) are used. Hence, Random Forest is a reliable model that can be used to predict the moisture content level in rice as it gives a high accuracy even when only one input feature is used.
    Matched MeSH terms: Wireless Technology
  17. Balachandran R, Prepageran N, Prepagaran N, Rahmat O, Zulkiflee AB, Hufaida KS
    J Laryngol Otol, 2012 Apr;126(4):345-8.
    PMID: 22310164 DOI: 10.1017/S0022215112000047
    The Bluetooth wireless headset has been promoted as a 'hands-free' device with a low emission of electromagnetic radiation.
    Matched MeSH terms: Wireless Technology*
  18. Bangash JI, Abdullah AH, Anisi MH, Khan AW
    Sensors (Basel), 2014;14(1):1322-57.
    PMID: 24419163 DOI: 10.3390/s140101322
    Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses.
    Matched MeSH terms: Wireless Technology*
  19. Bangash JI, Khan AW, Abdullah AH
    J Med Syst, 2015 Sep;39(9):91.
    PMID: 26242749 DOI: 10.1007/s10916-015-0268-5
    A significant proportion of the worldwide population is of the elderly people living with chronic diseases that result in high health-care cost. To provide continuous health monitoring with minimal health-care cost, Wireless Body Sensor Networks (WBSNs) has been recently emerged as a promising technology. Depending on nature of sensory data, WBSNs might require a high level of Quality of Service (QoS) both in terms of delay and reliability during data reporting phase. In this paper, we propose a data-centric routing for intra WBSNs that adapts the routing strategy in accordance with the nature of data, temperature rise issue of the implanted bio-medical sensors due to electromagnetic wave absorption, and high and dynamic path loss caused by postural movement of human body and in-body wireless communication. We consider the network models both with and without relay nodes in our simulations. Due to the multi-facet routing strategy, the proposed data-centric routing achieves better performance in terms of delay, reliability, temperature rise, and energy consumption when compared with other state-of-the-art.
    Matched MeSH terms: Wireless Technology*
  20. Basar MR, Ahmad MY, Cho J, Ibrahim F
    Sensors (Basel), 2014 Jun 19;14(6):10929-51.
    PMID: 24949645 DOI: 10.3390/s140610929
    Wireless capsule endoscopy (WCE) is a promising technology for direct diagnosis of the entire small bowel to detect lethal diseases, including cancer and obscure gastrointestinal bleeding (OGIB). To improve the quality of diagnosis, some vital specifications of WCE such as image resolution, frame rate and working time need to be improved. Additionally, future multi-functioning robotic capsule endoscopy (RCE) units may utilize advanced features such as active system control over capsule motion, drug delivery systems, semi-surgical tools and biopsy. However, the inclusion of the above advanced features demands additional power that make conventional power source methods impractical. In this regards, wireless power transmission (WPT) system has received attention among researchers to overcome this problem. Systematic reviews on techniques of using WPT for WCE are limited, especially when involving the recent technological advancements. This paper aims to fill that gap by providing a systematic review with emphasis on the aspects related to the amount of transmitted power, the power transmission efficiency, the system stability and patient safety. It is noted that, thus far the development of WPT system for this WCE application is still in initial stage and there is room for improvements, especially involving system efficiency, stability, and the patient safety aspects.
    Matched MeSH terms: Wireless Technology/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links