Displaying publications 381 - 400 of 959 in total

Abstract:
Sort:
  1. Nasran HS, Mohd Yusof H, Halim M, Abdul Rahman N
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512825 DOI: 10.3390/molecules25112618
    Anthracnose is a fungal disease causing major losses in crop production. Chemical fungicides widely used in crop plantations to combat fungal infections can be a threat to the environment and humans in the long term. Recently, biofungicides have gained much interest as an alternative to chemical fungicides due to their environmentally friendly nature. Biofungicide products in powder form can be formulated using the freeze-drying technique to provide convenient storage. Protective agent formulation is needed in maintaining the optimal viable cells of biofungicide products. In this study, 8.10 log colony-forming unit (CFU)/mL was the highest cell viability of Paenibacillus polymyxa Kp10 at 22 h during incubation. The effects of several selected protective agents on the viability of P. polymyxa Kp10 after freeze-drying were studied. Response surface methodology (RSM) was used for optimizing formulation for the protective agents. The combination of lactose (10% w/v), skim milk (20% w/v), and sucrose (27.5% w/v) was found to be suitable for preserving P. polymyxa Kp10 during freeze-drying. Further, P. polymyxa Kp10 demonstrated the ability to inhibit fungal pathogens, Colletotrichum truncatum and C. gloeosporioides, at 60.18% and 66.52% of inhibition of radial growth, respectively.
  2. Roselan MA, Ashari SE, Faujan NH, Mohd Faudzi SM, Mohamad R
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512808 DOI: 10.3390/molecules25112616
    Tyrosinase inhibitors have become increasingly important targets for hyperpigmentation disease treatment. Kojic monooleate (KMO), synthesized from the esterification of kojic acid and oleic acid, has shown a better depigmenting effect than kojic acid. In this study, the process parameters include the speed of high shear, the time of high shear and the speed of the stirrer in the production of nanoemulsion containing KMO was optimized using Response Surface Methodology (RSM), as well as evaluated in terms of its physicochemical properties, safety and efficacy. The optimized condition for the formulation of KMO nanoemulsion was 8.04 min (time of high shear), 4905.42 rpm (speed of high shear), and 271.77 rpm (speed of stirrer), which resulted in a droplet size of 103.97 nm. An analysis of variance (ANOVA) showed that the fitness of the quadratic polynomial fit the experimental data with large F-values (148.79) and small p-values (p < 0.0001) and an insignificant lack of fit. The optimized nanoemulsion containing KMO with a pH value of 5.75, showed a high conductivity value (3.98 mS/cm), which indicated that the nanoemulsion containing KMO was identified as an oil-in-water type of nanoemulsion. The nanoemulsion remains stable (no phase separation) under a centrifugation test and displays accelerated stability during storage at 4, 25 and 45 °C over 90 days. The cytotoxicity assay showed that the optimized nanoemulsion was less toxic, with a 50% inhibition of cell viability (IC50) > 500 μg/mL, and that it can inhibit 67.12% of tyrosinase activity. This study reveals that KMO is a promising candidate for the development of a safe cosmetic agent to prevent hyperpigmentation.
  3. Taher M, Shaari SS, Susanti D, Arbain D, Zakaria ZA
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512727 DOI: 10.3390/molecules25112611
    Almost 50 species of Ophiorrhiza plants were reviewed in this work and the main objective is to critically analyse their distribution, phytochemical content, biological activity, and propagation. Moreover, the information would be useful in promoting the relevant uses of the plant, especially in the medicinal fields based on in vitro and in vivo studies. To this end, scientific sources, including theses, PubMed, Google Scholar, International Islamic University Malaysia IIUM EBSCO, PubChem, and Elsevier, were accessed for publications regarding the Ophiorrhiza genus in this review. Scientific literature regarding the Ophiorrhiza plants revealed their wide distribution across Asia and the neighbouring countries, whereby they were utilised as traditional medicine to treat various diseases. In particular, various active compounds, such as alkaloids, flavonoids, and terpenoids, were reported in the plant. Furthermore, the Ophiorrhiza species showed highly diverse biological activities, such as anti-cancer, antiviral, antimicrobial, and more. The genus propagation reported could produce a high quality and quantity of potent anticancer compound, namely camptothecin (CPT). Hence, it is believed that the relevant uses of natural compounds present in the plants can replace the existing crop of synthetic anticancer drugs associated with a multitude of unbearable side effects. Additionally, more future studies on the Ophiorrhiza species should be undertaken to establish the links between its traditional uses, active compounds, and pharmacological activities reported.
  4. Nordin N, Yeap SK, Rahman HS, Zamberi NR, Mohamad NE, Abu N, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526880 DOI: 10.3390/molecules25112670
    Cancer nano-therapy has been progressing rapidly with the introduction of many novel drug delivery systems. The previous study has reported on the in vitro cytotoxicity of citral-loaded nanostructured lipid carrier (NLC-Citral) on MDA-MB-231 cells and some preliminary in vivo antitumor effects on 4T1 breast cancer cells challenged mice. However, the in vivo apoptosis induction and anti-metastatic effects of NLC-Citral have yet to be reported. In this study, the in vitro cytotoxic, anti-migration, and anti-invasion effects of NLC-Citral were tested on 4T1 breast cancer cells. In addition, the in vivo antitumor effects of oral delivery of NLC-Citral was also evaluated on BALB/c mice induced with 4T1 cells. In vitro cytotoxicity results showed that NLC-Citral and citral gave similar IC50 values on 4T1 cells. However, wound healing, migration, and invasion assays reflected better in vitro anti-metastasis potential for NLC-Citral than citral alone. Results from the in vivo study indicated that both NLC-Citral and citral have anti-tumor and anti-metastasis effects, whereby the NLC-Citral showed better efficacy than citral in all experiments. Also, the delay of tumor progression was through the suppression of the c-myc gene expression and induction of apoptosis in the tumor. In addition, the inhibition of metastasis of 4T1 cells to lung and bone marrow by the NLC-Citral and citral treatments was correlated with the downregulation of metastasis-related genes expression including MMP-9, ICAM, iNOS, and NF-kB and the angiogenesis-related proteins including G-CSF alpha, Eotaxin, bFGF, VEGF, IL-1alpha, and M-CSF in the tumor. Moreover, NLC-Citral showed greater downregulation of MMP-9, iNOS, ICAM, Eotaxin, bFGF, VEGF, and M-CSF than citral treatment in the 4T1-challenged mice, which may contribute to the better anti-metastatic effect of the encapsulated citral. This study suggests that NLC is a potential and effective delivery system for citral to target triple-negative breast cancer.
  5. Ashhar Z, Yusof NA, Ahmad Saad FF, Mohd Nor SM, Mohammad F, Bahrin Wan Kamal WH, et al.
    Molecules, 2020 Jun 09;25(11).
    PMID: 32526838 DOI: 10.3390/molecules25112668
    Early diagnosis of bone metastases is crucial to prevent skeletal-related events, and for that, the non-invasive techniques to diagnose bone metastases that make use of image-guided radiopharmaceuticals are being employed as an alternative to traditional biopsies. Hence, in the present work, we tested the efficacy of a gallium-68 (68Ga)-based compound as a radiopharmaceutical agent towards the bone imaging in positron emitting tomography (PET). For that, we prepared, thoroughly characterized, and radiolabeled [68Ga]Ga-NODAGA-pamidronic acid radiopharmaceutical, a 68Ga precursor for PET bone cancer imaging applications. The preparation of NODAGA-pamidronic acid was performed via the N-Hydroxysuccinimide (NHS) ester strategy and was characterized using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MSn). The unreacted NODAGA chelator was separated using the ion-suppression reverse phase-high performance liquid chromatography (RP-HPLC) method, and the freeze-dried NODAGA-pamidronic acid was radiolabeled with 68Ga. The radiolabeling condition was found to be most optimum at a pH ranging from 4 to 4.5 and a temperature of above 60 °C. From previous work, we found that the pamidronic acid itself has a good bone binding affinity. Moreover, from the analysis of the results, the ionic structure of radiolabeled [68Ga]Ga-NODAGA-pamidronic acid has the ability to improve the blood clearance and may exert good renal excretion, enhance the bone-to-background ratio, and consequently the final image quality. This was reflected by both the in vitro bone binding assay and in vivo animal biodistribution presented in this research.
  6. Kamal Eddin FB, Fen YW
    Molecules, 2020 Jun 15;25(12).
    PMID: 32549390 DOI: 10.3390/molecules25122769
    For a healthy life, the human biological system should work in order. Scheduled lifestyle and lack of nutrients usually lead to fluctuations in the biological entities levels such as neurotransmitters (NTs), proteins, and hormones, which in turns put the human health in risk. Dopamine (DA) is an extremely important catecholamine NT distributed in the central nervous system. Its level in the body controls the function of human metabolism, central nervous, renal, hormonal, and cardiovascular systems. It is closely related to the major domains of human cognition, feeling, and human desires, as well as learning. Several neurological disorders such as schizophrenia and Parkinson's disease are related to the extreme abnormalities in DA levels. Therefore, the development of an accurate, effective, and highly sensitive method for rapid determination of DA concentrations is desired. Up to now, different methods have been reported for DA detection such as electrochemical strategies, high-performance liquid chromatography, colorimetry, and capillary electrophoresis mass spectrometry. However, most of them have some limitations. Surface plasmon resonance (SPR) spectroscopy was widely used in biosensing. However, its use to detect NTs is still growing and has fascinated impressive attention of the scientific community. The focus in this concise review paper will be on the principle of SPR sensors and its operation mechanism, the factors that affect the sensor performance. The efficiency of SPR biosensors to detect several clinically related analytes will be mentioned. DA functions in the human body will be explained. Additionally, this review will cover the incorporation of nanomaterials into SPR biosensors and its potential for DA sensing with mention to its advantages and disadvantages.
  7. Ramadan NS, Wessjohann LA, Mocan A, Vodnar DC, El-Sayed NH, El-Toumy SA, et al.
    Molecules, 2020 May 22;25(10).
    PMID: 32455938 DOI: 10.3390/molecules25102423
    Averrhoa carambola L. is a tropical tree with edible fruit that grows at different climatic conditions. Despite its nutritive value and reported health benefits, it is a controversial fruit owing to its rich oxalate content. The present study aimed at investigating aroma and nutrient primary metabolites distribution in A. carambola fruits grown in Indonesia, Malaysia (its endemic origin) versus Egypt, and at different ripening stages. Two techniques were employed to assess volatile and non-volatile metabolites including headspace solid-phase micro-extraction (HS-SPME) joined with gas chromatography coupled with mass-spectrometry (GC-MS) and GC-MS post silylation, respectively. Twenty-four volatiles were detected, with esters amounting for the major class of volatiles in Egyptian fruit at ca. 66%, with methyl caproate as the major component, distinguishing it from other origins. In contrast, aldehydes predominated tropically grown fruits with the ether myristicin found exclusively in these. Primary metabolites profiling led to the identification of 117 metabolites viz. sugars, polyols and organic acids. Fructose (38-48%) and glucose (21-25%) predominated sugar compositions in ripe fruits, whereas sorbitol was the major sugar alcohol (2.4-10.5%) in ripe fruits as well. Oxalic acid, an anti-nutrient with potential health risks, was the major organic acid detected in all the studied fruits (1.7-2.7%), except the Malaysian one (0.07%). It increases upon fruit ripening, including considerable amounts of volatile oxalate esters detected via SPME, and which must not be omitted in total oxalate determinations for safety assessments.
  8. Hisham S, Kadirgama K, Mohammed HA, Kumar A, Ramasamy D, Samykano M, et al.
    Molecules, 2020 Jun 28;25(13).
    PMID: 32605301 DOI: 10.3390/molecules25132975
    Friction and wear are the main factors in the failure of the piston in automobile engines. The objective of this work was to improve the tribological behaviour and lubricant properties using hybrid Cellulose Nanocrystal (CNC) and Copper (II) oxide nanoparticles blended with SAE 40 as a base fluid. The two-step method was used in the hybrid nanofluid preparation. Three different concentrations were prepared in a range of 0.1% to 0.5%. Kinematic viscosity and viscosity index were also identified. The friction and wear behavior were evaluated using a tribometer based on ASTM G181. The CNC-CuO nano lubricant shows a significant improvement in term of viscosity index by 44.3-47.12% while for friction, the coefficient of friction (COF) decreases by 1.5%, respectively, during high and low-speed loads (boundary regime), and 30.95% during a high-speed, and low load (mixed regime). The wear morphologies results also show that a smoother surface was obtained after using CNC-CuO nano lubricant compared to SAE 40.
  9. Ooi DJ, Chan KW, Sarega N, Alitheen NB, Ithnin H, Ismail M
    Molecules, 2016 Jun 17;21(6).
    PMID: 27322226 DOI: 10.3390/molecules21060682
    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.
  10. Hussein SZ, Yusoff KM, Makpol S, Yusof YA
    Molecules, 2011 Jul 27;16(8):6378-95.
    PMID: 21796076 DOI: 10.3390/molecules16066378
    Two types of monofloral Malaysian honey (Gelam and Nenas) were analyzed to determine their antioxidant activities and total phenolic and flavonoid contents, with and without gamma irradiation. Our results showed that both types of honey can scavenge free radicals and exhibit high antioxidant-reducing power; however, Gelam honey exhibited higher antioxidant activity (p < 0.05) than Nenas honey, which is in good correlation (r = 0.9899) with its phenolic contents. Interestingly, we also noted that both irradiated honeys have higher antioxidant activities and total phenolic and flavonoid contents compared to nonirradiated honeys by Folin-Ciocalteu and UV-spectrophotometry methods, respectively. However, HPLC analysis for phenolic compounds showed insignificant increase between irradiated and nonirradiated honeys. The phenolic compounds such as: caffeic acid, chlorogenic acid, ellagic acid, p- coumaric acid, quercetin and hesperetin as indicated by HPLC method were found to be higher in Gelam honey versus Nenas honey. In conclusion, irradiation of honey causes enhanced antioxidant activities and flavonoid compounds.
  11. Wong KT, Osman H, Parumasivam T, Supratman U, Che Omar MT, Azmi MN
    Molecules, 2021 Apr 05;26(7).
    PMID: 33916423 DOI: 10.3390/molecules26072081
    A total of fourteen pyrazoline derivatives were synthesized through cyclo-condensation reactions by chalcone derivatives with different types of semicarbazide. These compounds were characterized by IR, 1D-NMR (1H, 13C and Distortionless Enhancement by Polarization Transfer - DEPT-135) and 2D-NMR (COSY, HSQC and HMBC) as well as mass spectroscopy analysis (HRMS). The synthesized compounds were tested for their antituberculosis activity against Mycobacterium tuberculosis H37Ra in vitro. Based on this activity, compound 4a showed the most potent inhibitory activity, with a minimum inhibitory concentration (MIC) value of 17 μM. In addition, six other synthesized compounds, 5a and 5c-5g, exhibited moderate activity, with MIC ranges between 60 μM to 140 μM. Compound 4a showed good bactericidal activity with a minimum bactericidal concentration (MBC) value of 34 μM against Mycobacterium tuberculosis H37Ra. Molecular docking studies for compound 4a on alpha-sterol demethylase was done to understand and explore ligand-receptor interactions, and to hypothesize potential refinements for the compound.
  12. Wan Mohd Zamri WMI, Sjahrir F, Yaacob NS, Dzulkafli NF, Ahmad MF, Abdullah H, et al.
    Molecules, 2021 Apr 23;26(9).
    PMID: 33922872 DOI: 10.3390/molecules26092480
    The assessment of water-extractable organic matter using an autoclave can provide useful information on physical, chemical, and biological changes within the soil. The present study used virgin forest soils from Chini Forest Reserve, Langkawi Island, and Kenyir Forest Reserve (Malaysia), extracted using different extraction methods. The dissolved organic carbon (DOC), total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and ammonium-nitrate content were higher in the autoclave treatments, up to 3.0, 1.3, 1.2, and 1.4 times more than by natural extraction (extracted for 24 h at room temperature). Overall, the highest extractable DOC, TDN, TDP, ammonium and nitrate could be seen under autoclaved conditions 121 °C 2×, up to 146.74 mg C/L, 8.97 mg N/L, 0.23 mg P/L, 5.43 mg N mg/L and 3.47 N mg/L, respectively. The soil extracts became slightly acidic with a higher temperature and longer duration. Similar trends were observed in the humic and nonhumic substances, where different types of soil extract treatments influenced the concentrations of the fractions. Different soil extraction methods can provide further details, thus widening the application of soil extracts, especially in microbes.
  13. Adenan MNH, Yazan LS, Christianus A, Md Hashim NF, Mohd Noor S, Shamsudin S, et al.
    Molecules, 2021 Mar 12;26(6).
    PMID: 33809054 DOI: 10.3390/molecules26061557
    Large doses of ionizing radiation can damage human tissues. Therefore, there is a need to investigate the radiation effects as well as identify effective and non-toxic radioprotectors. This study evaluated the radioprotective effects of Kelulut honey (KH) from stingless bee (Trigona sp.) on zebrafish (Danio rerio) embryos. Viable zebrafish embryos at 24 hpf were dechorionated and divided into four groups, namely untreated and non-irradiated, untreated and irradiated, KH pre-treatment and amifostine pre-treatment. The embryos were first treated with KH (8 mg/mL) or amifostine (4 mM) before irradiation at doses of 11 Gy to 20 Gy using gamma ray source, caesium-137 (137Cs). Lethality and abnormality analysis were performed on all of the embryos in the study. Immunohistochemistry assay was also performed using selected proteins, namely γ-H2AX and caspase-3, to investigate DNA damages and incidences of apoptosis. KH was found to reduce coagulation effects at up to 20 Gy in the lethality analysis. The embryos developed combinations of abnormality, namely microphthalmia (M), body curvature and microphthalmia (BM), body curvature with microphthalmia and microcephaly (BMC), microphthalmia and pericardial oedema (MO), pericardial oedema (O), microphthalmia with microcephaly and pericardial oedema (MCO) and all of the abnormalities (AA). There were more abnormalities developed from 24 to 72 h (h) post-irradiation in all groups. At 96 h post-irradiation, KH was identified to reduce body curvature effect in the irradiated embryos (up to 16 Gy). γ-H2AX and caspase-3 intensities in the embryos pre-treated with KH were also found to be lower than the untreated group at gamma irradiation doses of 11 Gy to 20 Gy and 11 Gy to 19 Gy, respectively. KH was proven to increase the survival rate of zebrafish embryos and exhibited protection against organ-specific abnormality. KH was also found to possess cellular protective mechanism by reducing DNA damage and apoptosis proteins expression.
  14. Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N
    Molecules, 2021 Mar 12;26(6).
    PMID: 33808969 DOI: 10.3390/molecules26061554
    BACKGROUND: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines.

    METHODS: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out.

    RESULTS: Nordamnacanthal and damnacanthal at IC50 values of 1.7 μg/mL and10 μg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180-200 bp fragments that are visible as a "ladder" on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle.

    CONCLUSION: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia.

  15. Yanagisawa D, Ibrahim NF, Taguchi H, Morikawa S, Tomiyama T, Tooyama I
    Molecules, 2021 Mar 04;26(5).
    PMID: 33806326 DOI: 10.3390/molecules26051362
    Recent evidence suggests that the formation of soluble amyloid β (Aβ) aggregates with high toxicity, such as oligomers and protofibrils, is a key event that causes Alzheimer's disease (AD). However, understanding the pathophysiological role of such soluble Aβ aggregates in the brain in vivo could be difficult due to the lack of a clinically available method to detect, visualize, and quantify soluble Aβ aggregates in the brain. We had synthesized a novel fluorinated curcumin derivative with a fixed keto form, named as Shiga-Y51, which exhibited high selectivity to Aβ oligomers in vitro. In this study, we investigated the in vivo detection of Aβ oligomers by fluorine-19 (19F) magnetic resonance imaging (MRI) using Shiga-Y51 in an APP/PS1 double transgenic mouse model of AD. Significantly high levels of 19F signals were detected in the upper forebrain region of APP/PS1 mice compared with wild-type mice. Moreover, the highest levels of Aβ oligomers were detected in the upper forebrain region of APP/PS1 mice in enzyme-linked immunosorbent assay. These findings suggested that 19F-MRI using Shiga-Y51 detected Aβ oligomers in the in vivo brain. Therefore, 19F-MRI using Shiga-Y51 with a 7 T MR scanner could be a powerful tool for imaging Aβ oligomers in the brain.
  16. Al-Shaibani MM, Radin Mohamed RMS, Zin NM, Al-Gheethi A, Al-Sahari M, El Enshasy HA
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923072 DOI: 10.3390/molecules26092510
    The present research aimed to enhance the pharmaceutically active compounds' (PhACs') productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant Staphylococcus aureus were determined. Further, the techno-economic analysis of PhACs production was estimated. The independent factors include the following: incubation time, pH, temperature, shaker rotation speed, the concentration of glucose, mannitol, and asparagine, although the responses were the dry weight of crude extracts, minimum inhibitory concentration, and inhibition zone and were determined by RSM. The PhACs were characterized using GC-MS and FTIR, while the mechanism of action was determined using gene ontology extracted from DNA microarray data. The results revealed that the best operating parameters for the dry mass crude extracts production were 8.20 mg/L, the minimum inhibitory concentrations (MIC) value was 8.00 µg/mL, and an inhibition zone of 17.60 mm was determined after 12 days, pH 7, temperature 28 °C, shaker rotation speed 120 rpm, 1 g glucose /L, 3 g mannitol/L, and 0.5 g asparagine/L with R2 coefficient value of 0.70. The GC-MS and FTIR spectra confirmed the presence of 21 PhACs, and several functional groups were detected. The gene ontology revealed that 485 genes were upregulated and nine genes were downregulated. The specific and annual operation cost of the production of PhACs was U.S. Dollar (U.S.D) 48.61 per 100 mg compared to U.S.D 164.3/100 mg of the market price, indicating that it is economically cheaper than that at the market price.
  17. Iqbal A, Saidu U, Adam F, Sreekantan S, Yahaya N, Ahmad MN, et al.
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923041 DOI: 10.3390/molecules26092509
    In this work, mesoporous TiO2-modified ZnO quantum dots (QDs) were immobilised on a linear low-density polyethylene (LLDPE) polymer using a solution casting method for the photodegradation of tetracycline (TC) antibiotics under fluorescent light irradiation. Various spectroscopic and microscopic techniques were used to investigate the physicochemical properties of the floating hybrid polymer film catalyst (8%-ZT@LLDPE). The highest removal (89.5%) of TC (40 mg/L) was achieved within 90 min at pH 9 due to enhanced water uptake by the LDDPE film and the surface roughness of the hybrid film. The formation of heterojunctions increased the separation of photogenerated electron-hole pairs. The QDs size-dependent quantum confinement effect leads to the displacement of the conduction band potential of ZnO QDs to more negative energy values than TiO2. The displacement generates more reactive species with higher oxidation ability. The highly stable film photocatalyst can be separated easily and can be repeatedly used up to 8 cycles without significant loss in the photocatalytic ability. The scavenging test indicates that the main species responsible for the photodegradation was O2●-. The proposed photodegradation mechanism of TC was demonstrated in further detail based on the intermediates detected by LC-time-of-flight/mass spectrometry (LC/TOF-MS).
  18. Saallah S, Roslan J, Julius FS, Saallah S, Mohamad Razali UH, Pindi W, et al.
    Molecules, 2021 Apr 28;26(9).
    PMID: 33924820 DOI: 10.3390/molecules26092564
    Collagen was extracted from the body wall of sea cucumber (Holothuria scabra) using the pepsin-solubilized collagen method followed by isolation using dialysis and the ultrafiltration membrane. The yield and physicochemical properties of the collagen obtained from both isolation methods, denoted as D-PSC and UF-PSC, were compared. The ultrafiltration method affords a higher yield of collagen (11.39%) than that of the dialysis (5.15%). The isolated collagens have almost the same amino acid composition, while their functional groups, referred to as amide A, B, I, II, and III bands, were in accordance with commercial collagen, as verified by Fourier Transform Infrared (FT-IR) spectroscopy. The UV-Vis absorption peaks at 240 nm and 220 nm, respectively, indicated that the collagens produced are type-I collagen. The D-PSC showed interconnecting sheet-like fibrils, while the UF-PSC exhibited a flaky structure with flat-sheets arranged very close to each other. The higher yield and comparable physicochemical properties of the collagen obtained by ultrafiltration as compared with dialysis indicate that the membrane process has high potential to be used in large-scale collagen production for food and pharmaceutical applications.
  19. Oyekanmi AA, Saharudin NI, Hazwan CM, H P S AK, Olaiya NG, Abdullah CK, et al.
    Molecules, 2021 Apr 13;26(8).
    PMID: 33924692 DOI: 10.3390/molecules26082254
    Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films' modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.
  20. Mahendra CK, Abidin SAZ, Htar TT, Chuah LH, Khan SU, Ming LC, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916053 DOI: 10.3390/molecules26072000
    In this day and age, the expectation of cosmetic products to effectively slow down skin photoaging is constantly increasing. However, the detrimental effects of UVB on the skin are not easy to tackle as UVB dysregulates a wide range of molecular changes on the cellular level. In our research, irradiated keratinocyte cells not only experienced a compromise in their redox system, but processes from RNA translation to protein synthesis and folding were also affected. Aside from this, proteins involved in various other processes like DNA repair and maintenance, glycolysis, cell growth, proliferation, and migration were affected while the cells approached imminent cell death. Additionally, the collagen degradation pathway was also activated by UVB irradiation through the upregulation of inflammatory and collagen degrading markers. Nevertheless, with the treatment of Swietenia macrophylla (S. macrophylla) seed extract and fractions, the dysregulation of many genes and proteins by UVB was reversed. The reversal effects were particularly promising with the S. macrophylla hexane fraction (SMHF) and S. macrophylla ethyl acetate fraction (SMEAF). SMHF was able to oppose the detrimental effects of UVB in several different processes such as the redox system, DNA repair and maintenance, RNA transcription to translation, protein maintenance and synthesis, cell growth, migration and proliferation, and cell glycolysis, while SMEAF successfully suppressed markers related to skin inflammation, collagen degradation, and cell apoptosis. Thus, in summary, our research not only provided a deeper insight into the molecular changes within irradiated keratinocytes, but also serves as a model platform for future cosmetic research to build upon. Subsequently, both SMHF and SMEAF also displayed potential photoprotective properties that warrant further fractionation and in vivo clinical trials to investigate and obtain potential novel bioactive compounds against photoaging.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links