Medicinal plants represent one of the most accessible resources available for snake and scorpion bite among the rural communities of Northern Pakistan. This first ethno-botanical study aimed to document the indigenous knowledge and practices of using plants for snake and scorpion bite disorders in Northern Pakistan.
Nine new xanthones, parvixanthones A-I (1-9), isolated from the dried bark of Garcinia parvifolia, were found to have a common 1,3,6,7-oxygenated pattern for their xanthone nucleus, but various oxygenated isoprenyl or geranyl substituent groups. The structures were determined by spectroscopic methods.
Two new biflavonoids, pyranoamentoflavone 7-methyl ether (1) and pyranoamentoflavone 4'-methyl ether (2), have been isolated from the leaves of Calophyllum venulosum. The structures of these two new compounds were elucidated by spectroscopic data.
A new iridoid glucoside with an ether linkage between C-3 and C-10 and a novel nonglycosidic iridoid with an ether linkage between C-3 and C-6 and a lactonic linkage at C-1, named macrophylloside (1) and macrophyllide (2), respectively, were isolated from the leaves of Rothmannia macrophylla, along with six known iridoids. Their structures were established by NMR and MS spectroscopies.
In vitro and in vivo studies revealed that Malaysian medicinal plants, Piper sarmentosum, Andrographis paniculata and Tinospora crispa produced considerable antimalarial effects. Chloroform extract in vitro did show better effect than the methanol extract. The chloroform extract showed complete parasite growth inhibition as low as 0.05 mg/ml drug dose within 24 h incubation period (Andrographis paniculata) as compared to methanol extract of drug dose of 2.5 mg/ml but under incubation time of 48 h of the same plant spesies. In vivo activity of Andrographis paniculata also demonstrated higher antimalarial effect than other two plant species.
The colour pigments of five chili powders of different origins were separated and quantified by reversed-phase high-performance liquid chromatography (RP-HPLC). The similarities and dissimilarities of pigment composition of chili powders were elucidated by principal component analysis (PCA). RP-HPLC separated 50-100 pigment fractions depending on the detection wavelength and on the origin of chili powder. It was found that the pigment composition of chili powders from Malaysia and China and from India and Pakistan show marked similarities while the composition of colour pigments of chili powder from Thailand was different. It was further established that the chromatograms are similar in the first 5-35 min of development, they are highly different between 35 and 75 min and moderately different at the end of the chromatograms. It was concluded that RP-HPLC followed by PCA can be successfully used for the identification of chili powders according to the composition of their colour pigments.
Six new sulfur-containing bis-iridoid glucosides, saprosmosides A-F (1-6), were isolated from the leaves of Saprosma scortechinii. From the stems of this same plant, two new iridoid glucosides, 3,4-dihydro-3-methoxypaederoside (8) and 10-O-benzoyldeacetylasperulosidic acid (12), were isolated. Their structures were elucidated by means of chemical, NMR, and mass spectroscopic methods. Additionally, 11 known iridoid glucosides were isolated and characterized as deacetylasperuloside, asperuloside, paederoside (7), deacetylasperulosidic acid (9), scandoside, asperulosidic acid, 10-acetylscandoside, paederosidic acid (10), 6-epi-paederosidic acid (11), methylpaederosidate, and monotropein. The structures of the new bis-iridoid glucosides were formed by intermolecular esterification between the glucose and carboxyl groups of three monomeric iridoid glucosides (7, 9, and 10).
Five new indole alkaloids of the ibogan type (1-5), in addition to 12 other known iboga alkaloids, were obtained from the leaf and stem-bark extract of the Malayan species Tabernaemontana corymbosa, viz., 19(S)-hydroxyibogamine (1), 19-epi-isovoacristine (2), isovoacryptine (3), 3R/S-ethoxyheyneanine (4), and 3R/S-ethoxy-19-epi-heyneanine (5). The structures were determined using NMR and MS analysis and comparison with known related compounds.
Three new indole alkaloids with methyl chanofruticosinates skeletal system, viz., methyl 12-methoxy-N1-decarbomethoxychanofruticosinate, methyl 12-methoxychanofruticosinate and methyl 11,12-dimethoxychanofruticosinate, in addition to methyl 11,12-methylenedioxy-N1-decarbomethoxychanofruticosinate, have been isolated from the leaves of Kopsia flavida Blume. The structures of these three new indole alkaloids were assigned by NMR spectral data using various 2D-techniques.
Leaf extracts of Garcinia parvifolia provided relatively high yields of four novel, cytotoxic prenylated depsidones. The structures were determined mainly by detailed NMR spectral analysis and X-ray crystallography.
Crinum asiaticum Linn plant is used in Malaysia as a rheumatic remedy and to relieve local pain. In the present study, we examined the anti-inflammatory effects of this plant extract on carrageenan-induced hind paw oedema in mice. C. asiaticum was serially extracted with petroleum ether, followed by chloroform and lastly, methanol. The chloroform and methanol extracts of the plant given orally (50 mg kg-1) caused significant (p < 0.05; n = 7) reduction in paw oedema but the petroleum ether extract did not induce significant effect (p > 0.05) on paw oedema. The methanol extract was then dissolved in water and extracted consecutively with chloroform, ethyl acetate and butanol. The chloroform fraction of methanol extract (CFME) treatment (50 mg kg(-1)) significantly reduced (p < 0.05; n = 7) the acute paw oedema. This may indicate that active anti-inflammatory compounds are present in the CFME. In an attempt to study the mechanism of action of its anti-inflammatory activity, the effects of CFME on BK- and histamine-induced contractions were investigated in isolated rat uterus and guinea-pig ileum preparations, respectively. It was found that CFME caused dose-dependent reduction (p < 0.05; n = 6) of the contractile response induced by BK and shifted the log dose-response curve of histamine to the right. The present findings suggest that C. asiaticum possessed an anti-inflammatory activity as suggested by its use in traditional medicine. The anti-inflammatory activity of this plant could not have been due to its anti-bradykinin activities as CFME non-specifically inhibited BK-induced contraction. It also suggest that CFME may contain compound(s) with anti-histaminic properties. The significance of these findings is discussed.
Leaf extracts of Callicarpa pentandra provided four new clerodane-type diterpenoids (1-4), of which 1, 2, and 4 have ring-A-contracted structures. Their structures and stereochemistry were established by spectral data interpretation, and for 3 also by single-crystal X-ray diffraction.
Ten new bisindole alkaloids of the vobasinyl-ibogan type, viz., conodiparines A-F (1-6), conodutarines A and B (7, 8), and cononitarines A and B (9, 10), were obtained from the leaf extract of the Malayan species Tabernaemontana corymbosa. The structures were determined using NMR and MS analysis.
Nine simple sequence repeat (SSR) markers were developed from Shorea curtisii using two different methods. One SSR locus was isolated by the commonly used method of screening by colony hybridization, and the other eight loci were isolated by a vectorette PCR method. Primer pairs were designed based on the sequences of all these SSR loci. Analysis of 40 individuals of S. curtisii from natural forest in Malaysia revealed that all SSR loci were polymorphic. Four SSR markers, Shc01, Shc04, Shc07 and Shc09, were highly polymorphic. We have also tested the applicability of these SSR printers to other species of Dipterocarpaceae using PCR amplification. Because the flanking region sequences of the S. curtisii SSRs were well conserved within this family, the SSR primers for S. curtisii can be applied to almost all species of Dipterocarpaceae.
The latex of pokok ipoh (Antiaris toxocaria) and the root bark of akar ipoh (Strychnos species) have been the main sources of the poisonous principles in dart and arrow poisons prepared throughout south-east Asia. We report a fatal case of rhabdomyolysis and acute oliguric renal failure following oral ingestion of blowpipe dart poison. To our knowledge this is the first such report.
Four complex flavanones, kurziflavolactones A [2], B [3], C [4], and D [5] and a complex chalcone 6 with an unprecedented carbon side chain on the flavanone or chalcone A ring have been isolated from a Malaysian plant, Cryptocarya kurzii (Lauraceae). Their structures were determined by extensive spectroscopic analysis, especially 2D nmr experiments. Compounds 3 and 6 showed slight cytotoxicity against KB cells, with IC50 values of 4 and 15 micrograms/ml, respectively. A biosynthetic pathway for the formation of these compounds is suggested.
This report describes a patient with acute renal failure that resulted from the ingestion of djenkol beans. Features of acute djenkolism include nausea, vomiting, bilateral loin pain, gross hematuria, and oliguria. The blood urea level was 16.2 mmol/L and the serum creatinine was 460 mumol/L. Phase contrast microscopy of the urinary sediment indicated that the hematuria was nonglomerular. Ultrasound of the kidneys showed slightly enlarged kidneys with no features of obstruction. Renal biopsy showed acute tubular necrosis similar to the single animal study reported in the literature. With conservative therapy, which included rehydration with normal saline and alkalinization of the urine with sodium bicarbonate, the acute renal failure resolved. Based on its chemistry, djenkol bean-associated acute renal failure may be analogous to acute uric acid nephropathy.