Displaying publications 401 - 420 of 928 in total

Abstract:
Sort:
  1. Abdelsalam M, Chen SC, Yoshida T
    FEMS Microbiol Lett, 2010 Aug 1;309(1):105-13.
    PMID: 20528946 DOI: 10.1111/j.1574-6968.2010.02024.x
    The Lancefield group C alpha-hemolytic Streptococcus dysgalactiae ssp. dysgalactiae (GCSD) causes systemic granulomatous inflammatory disease and high mortality rates in infected fish. Superantigen and streptolysin S genes are the most important virulence factors contributing to an invasive streptococcal infection. PCR amplification revealed that all strains isolated from moribund fish harbored the streptolysin S structural gene (sagA). GCSD fish isolates were PCR negative for emm, speA, speB, speC, speM, smeZ, and ssa. However, the size of the streptococcal pyrogenic exotoxin G (spegg) locus, a superantigen, in positive S. dysgalactiae fish and pig strains was variable. The ORF of the spegg locus of 26 GCSD fish strains and one GCSD pig strain was inserted with IS981SC. Interestingly, the ORF of the spegg locus of two fish strains of GCSD collected in Malaysia was inserted with an IS981SC-IS1161 hybrid IS element. The hybrid IS element was found in all of the GCSD fish isolates and one GCSD pig through PCR screening. Although no insertion sequence (IS) was detected in the spegg locus of S. dysgalactiae ssp. equisimilis (GCSE) strains, a five-nucleotide deletion mutation was detected in the ORF of the spegg locus of one GCSE strain at the supposed site of IS981SC insertion, resulting in a frameshift mutation.
    Matched MeSH terms: Molecular Sequence Data
  2. Schuh AJ, Tesh RB, Barrett AD
    J Gen Virol, 2011 Mar;92(Pt 3):516-27.
    PMID: 21123550 DOI: 10.1099/vir.0.027110-0
    Japanese encephalitis virus (JEV), the prototype member of the JEV serocomplex, genus Flavivirus, family Flaviviridae, is the most significant arthropod-borne encephalitis worldwide in terms of morbidity and mortality. At least four genotypes (GI-GIV) of the virus have been identified; however, to date, the genomic nucleotide sequence of only one GII virus has been determined (FU strain, Australia, 1995). This study sequenced three additional GII strains of JEV isolated between 1951 and 1978 in Korea, Malaysia and Indonesia, respectively, and compared them with the FU strain, as well as with virus strains representing the other three genotypes. Based on nucleotide and amino acid composition, the genotype II strains were the most similar to GI strains; however, these two genotypes are epidemiologically distinct. Selection analyses revealed that the strains utilized in this study are under predominantly purifying selection, and evidence of positive selection was detected at aa 24 of the NS4B protein, a protein that functions as an alpha/beta interferon signalling inhibitor.
    Matched MeSH terms: Molecular Sequence Data
  3. Sim JH, Khoo CH, Lee LH, Cheah YK
    J Microbiol Biotechnol, 2010 Apr;20(4):651-8.
    PMID: 20467234
    Garcinia is commonly found in Malaysia, but limited information is available regarding endophytic fungi associated with this plant. In this study, 24 endophytic fungi were successfully recovered from different parts of two Garcinia species. Characterization of endophytic fungi was performed based on the conserved internal transcribed spacer (ITS) region sequence analysis and the antimicrobial properties. Results revealed that fruits of the plant appeared to be the highest inhabitation site (38 %) as compared with others. Glomerella sp., Guignardia sp., and Phomopsis sp. appeared to be the predominant endophytic fungi group in Garcinia mangostana and Garcinia parvifolia. Phylogenetic relationships of the isolated endophytic fungi were estimated from the sequences of the ITS region. On the other hand, antibacterial screening showed 11 of the isolates possessed positive response towards pathogenic and nonpathogenic bacteria. However, there was no direct association between certain antibacterial properties with the specific genus observed.
    Matched MeSH terms: Molecular Sequence Data
  4. Loo SS, Blake DP, Mohd-Adnan A, Mohamed R, Wan KL
    Parasitology, 2010 Jul;137(8):1169-77.
    PMID: 20233491 DOI: 10.1017/S0031182010000119
    Limitations with current chemotherapeutic and vaccinal control of coccidiosis caused by Eimeria species continue to prompt development of novel controls, including the identification of new drug targets. Glucose-6-phosphate isomerase (G6-PI) has been proposed as a valid drug target for many protozoa, although polymorphism revealed by electrophoretic enzyme mobility has raised doubts for Eimeria. In this study we identified and sequenced the Eimeria tenella G6-PI orthologue (EtG6-PI) from the reference Houghton strain and confirmed its position within the prevailing taxonomic hierarchy, branching with the Apicomplexa and Plantae, distinct from the Animalia including the host, Gallus gallus. Comparison of the deduced 1647 bp EtG6-PI coding sequence with the 9016 bp genomic locus revealed 15 exons, all of which obey the intron-AG-/exon/-GT-intron splicing rule. Comparison with the Weybridge and Wisconsin strains revealed the presence of 33 single nucleotide polymorphisms (SNPs) and 14 insertion/deletion sites. Three SNPs were exonic and all yielded non-synonymous substitutions. Preliminary structural predictions suggest little association between the coding SNPs and key G6-PI catalytic residues or residues thought to be involved in the coordination of the G6-PI's substrate phosphate group. Thus, the significant polymorphism from its host orthologue and minimal intra-specific polymorphism suggest G6-PI remains a valid anti-coccidial drug target.
    Matched MeSH terms: Molecular Sequence Data
  5. Mohamad SB, Ong AL, Khairuddin RF, Ripen AM
    In Silico Biol. (Gedrukt), 2010;10(3):145-53.
    PMID: 22430288 DOI: 10.3233/ISB-2010-0423
    Laccases are industrially attractive enzymes and their applications have expanded to the field of bioremediation. The challenge of today's biotechnology in enzymatic studies is to design enzymes that not only have a higher activity but are also more stable and could fit well with the condition requirements. Laccases are known to oxidize non-natural substrates like polycyclic aromatic hydrocarbons (PAHs). We suppose by increasing the hydrophobicity of laccase, it would increase the chance of the enzyme to meet the hydrophobic substrates in a contamination site, therefore increasing the bioremediation efficacy of PAHs from environment. In this attempt, the applications of evolutionary trace (ET), molecular surface accessibility and hydrophobicity analysis on laccase sequences and laccase's crystal structure (1KYA) are described for optimal design of an enzyme with higher hydrophobicity. Our analysis revealed that Q23A, Q45I, N141A, Q237V, N262L, N301V, N331A, Q360L and Q482A could be promising exchanges to be tested in mutagenesis experiments.
    Matched MeSH terms: Molecular Sequence Data
  6. Hara Y, Mohamed R, Nathan S
    PLoS One, 2009 Aug 05;4(8):e6496.
    PMID: 19654871 DOI: 10.1371/journal.pone.0006496
    BACKGROUND: Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. There is no vaccine towards the bacterium available in the market, and the efficacy of many of the bacterium's surface and secreted proteins are currently being evaluated as vaccine candidates.

    METHODOLOGY/PRINCIPAL FINDINGS: With the availability of the B. pseudomallei whole genome sequence, we undertook to identify genes encoding the known immunogenic outer membrane protein A (OmpA). Twelve OmpA domains were identified and ORFs containing these domains were fully annotated. Of the 12 ORFs, two of these OmpAs, Omp3 and Omp7, were successfully cloned, expressed as soluble protein and purified. Both proteins were recognised by antibodies in melioidosis patients' sera by Western blot analysis. Purified soluble fractions of Omp3 and Omp7 were assessed for their ability to protect BALB/c mice against B. pseudomallei infection. Mice were immunised with either Omp3 or Omp7, subsequently challenged with 1x10(6) colony forming units (cfu) of B. pseudomallei via the intraperitoneal route, and examined daily for 21 days post-challenge. This pilot study has demonstrated that whilst all control unimmunised mice died by day 9 post-challenge, two mice (out of 4) from both immunised groups survived beyond 21 days post-infection.

    CONCLUSIONS/SIGNIFICANCE: We have demonstrated that B. pseudomallei OmpA proteins are immunogenic in mice as well as melioidosis patients and should be further assessed as potential vaccine candidates against B. pseudomallei infection.

    Matched MeSH terms: Molecular Sequence Data
  7. Tan SW, Ideris A, Omar AR, Yusoff K, Hair-Bejo M
    Arch Virol, 2010;155(1):63-70.
    PMID: 19898736 DOI: 10.1007/s00705-009-0540-4
    Sequence analysis of the fusion (F) gene of eight Malaysian NDV isolates showed that all the isolates were categorized as velogenic viruses, with the F cleavage site motif (112)R-R-Q-K-R(116) or (112)R-R-R-K-R(116) at the C-terminus of the F(2) protein and phenylalanine (F) at residue 117 at the N-terminus of the F(1) protein. Phylogenetic analysis revealed that all of the isolates were grouped in two distinct clusters under sub-genotype VIId. The isolates were about 4.8-11.7% genetically distant from sub-genotypes VIIa, VIIb, VIIc and VIIe. When the nucleotide sequences of the eight Malaysian isolates were compared phylogenetically to those of the old published local isolates, it was found that genotype VIII, VII, II and I viruses exist in Malaysia and caused sporadic infections. It is suggested that genotype VII viruses were responsible for most of the outbreaks in recent years.
    Matched MeSH terms: Molecular Sequence Data
  8. Cardosa J, Ooi MH, Tio PH, Perera D, Holmes EC, Bibi K, et al.
    PLoS Negl Trop Dis, 2009;3(4):e423.
    PMID: 19399166 DOI: 10.1371/journal.pntd.0000423
    Dengue viruses circulate in both human and sylvatic cycles. Although dengue viruses (DENV) infecting humans can cause major epidemics and severe disease, relatively little is known about the epidemiology and etiology of sylvatic dengue viruses. A 20-year-old male developed dengue hemorrhagic fever (DHF) with thrombocytopenia (12,000/ul) and a raised hematocrit (29.5% above baseline) in January 2008 in Malaysia. Dengue virus serotype 2 was isolated from his blood on day 4 of fever. A phylogenetic analysis of the complete genome sequence revealed that this virus was a member of a sylvatic lineage of DENV-2 and most closely related to a virus isolated from a sentinel monkey in Malaysia in 1970. This is the first identification of a sylvatic DENV circulating in Asia since 1975.
    Matched MeSH terms: Molecular Sequence Data
  9. Slack AT, Khairani-Bejo S, Symonds ML, Dohnt MF, Galloway RL, Steigerwalt AG, et al.
    Int J Syst Evol Microbiol, 2009 Apr;59(Pt 4):705-8.
    PMID: 19329592 DOI: 10.1099/ijs.0.002766-0
    A single Leptospira strain (designated Bejo-Iso9(T)) was isolated from a soil sample taken in Johor, Malaysia. The isolate showed motility and morphology typical of the genus Leptospira under dark-field microscopy. Cells were found to be 10-13 microm in length and 0.2 microm in diameter, with a wavelength of 0.5 microm and an amplitude of approximately 0.2 microm. Phenotypically, strain Bejo-Iso9(T) grew in Ellinghausen-McCullough-Johnson-Harris medium at 13, 30 and 37 degrees C, and also in the presence of 8-azaguanine. Serologically, strain Bejo-Iso9(T) produced titres towards several members of the Tarassovi serogroup, but was found to be serologically unique by cross-agglutinin absorption test and thus represented a novel serovar. The proposed name for this serovar is Malaysia. Phylogenetic analysis of 16S rRNA gene sequences placed this novel strain within the radiation of the genus Leptospira, with sequence similarities within the range 90.4-99.5% with respect to recognized Leptospira species. DNA-DNA hybridization against the three most closely related Leptospira species was used to confirm the results of the 16S rRNA gene sequence analysis. The G+C content of the genome of strain Bejo-Iso9(T) was 36.2 mol%. On the basis of phenotypic, serological and phylogenetic data, strain Bejo-Iso9(T) represents a novel species of the genus Leptospira, for which the name Leptospira kmetyi sp. nov. is proposed. The type strain is Bejo-Iso9(T) (=WHO LT1101(T)=KIT Bejo-Iso9(T)).
    Matched MeSH terms: Molecular Sequence Data
  10. Khadri MS, Depaquit J, Bargues MD, Ferté H, Mas-coma S, Lee HL, et al.
    Parasitol Int, 2008 Sep;57(3):295-9.
    PMID: 18378490 DOI: 10.1016/j.parint.2008.01.003
    The male of Phlebotomus (Larroussius) betisi is described from Malayan caves. Several males have been caught in association with P. betisi females. Males and females have been associated by ecology, biogeography, morphology and molecular biology (homology of the ND4 mtDNA sequences).
    Matched MeSH terms: Molecular Sequence Data
  11. Guzmán-Franco AW, Atkins SD, Alderson PG, Pell JK
    Mycol. Res., 2008 Oct;112(Pt 10):1227-40.
    PMID: 18693001 DOI: 10.1016/j.mycres.2008.04.006
    Species-specific primers for Zoophthora radicans and Pandora bluckii were developed. To achieve this, partial sequences of DNA that encode for rRNA, more specifically, the ITS region (rDNA-ITS) were obtained from different isolates and analysed. Seven Z. radicans isolates (four from P. xylostella, and three from other lepidopteran hosts) and one P. blunckii isolate (from P. xylostella) were used. These isolates were selected based on PCR-RFLP patterns obtained from 22 isolates of P. blunckii and 39 isolates of Z. radicans. All P. blunckii isolates were from the same host (P. xylostella); 20 isolates were from Mexico, one from the Philippines, and one from Germany. The Z. radicans isolates were more diverse in geographical origin (Mexico, Kenya, Japan, New Zealand, Australia, Taiwan, Philippines, Malaysia, Uruguay, France, USA, Poland, Indonesia, Switzerland, Israel, China, and Denmark) and host origin (Lepidoptera, Hemiptera, Hymentoptera, and Diptera). Using conventional PCR, each pair of species-specific primers successfully detected each species of fungus from DNA extracted from infected host larvae either single- or dual-inoculated with both fungal species. The PCR-RFLP analysis also showed that Z. radicans was genetically more diverse than P. blunckii, although only a limited number of P. blunckii isolates from one country were considered. There was no direct relationship between genetic diversity and host or geographical origin. The relationship between genetic variation within both fungal species and host specificity or ecological adaptation is discussed.
    Matched MeSH terms: Molecular Sequence Data
  12. Yong PV, Chong PP, Lau LY, Yeoh RS, Jamal F
    Mycopathologia, 2008 Feb;165(2):81-7.
    PMID: 18266075 DOI: 10.1007/s11046-007-9086-8
    The incidence of candidemia and invasive candidiasis have increased markedly due to the increasing number of immunocompromised patients. There are five major medically important species of Candida with their frequency of isolation in the diminishing order namely Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata and Candida krusei. In addition, there are numerous other species of Candida which differ in their genetic makeup, virulence properties, drug susceptibilities and sugar assimilation capabilities. In this report, an unusual Candida species was isolated from the blood of two leukaemic patients. Conventional culture and biochemical tests identified the Candida species as C. parapsilosis. Using fungal-specific oligonucleotide primers ITS1 and ITS4, we managed to amplify the ribosomal RNA gene and its internal transcribed spacer region from the genomic DNA of these isolates. The PCR products were then purified and subjected to automated DNA sequencing using BLAST and CLUSTAL sequence analysis identified these isolates to be Candida orthopsilosis. Candida orthopsilosis is a new species recently identified in 2005, being morphologically indistinguishable from C. parapsilosis and was previously classified as a subspecies of C. parapsilosis. This report highlights the importance of complementing traditional culture and biochemical-based identification methods with DNA-based molecular assays such as PCR as the latter is more superior in terms of its discriminatory power and speed.
    Matched MeSH terms: Molecular Sequence Data
  13. Chua KB, Chua BH, Lee CS, Chem YK, Ismail N, Kiyu A, et al.
    Malays J Pathol, 2007 Dec;29(2):69-78.
    PMID: 19108398
    All known field isolates of enterovirus 71 (EV71) can be divided into three distinct genogroups (A, B, C) and 10 subgenogroups (A, B1-5, C1-4) based on VP1 gene sequences. We examined VP1 gene sequences of 10, 12 and 11 EV71 strains isolated in peninsular Malaysia during the outbreaks of hand, foot and mouth disease in 1997, 2000 and 2005 respectively. Four EV71 strains isolated in the hand, foot and mouth disease outbreak of 2006 in Sarawak (Malaysian Borneo) were included to describe their genetic relationship. Four subgenogroups (C1, C2, B3 and B4) of EV71 co-circulated and caused the outbreak of hand, foot and mouth disease in peninsular Malaysia in 1997. Two subgenogroups (C1 and B4) were noted to cause the outbreak in 2000. In the 2005 outbreak, besides EV71 strains of subgenogroup C1, EV71 strains belonged to subgenogroup B5 were isolated but formed a cluster which was distinct from EV71 strains of the subgenogroup B5 isolated in 2003. The four EV71 strains isolated from clinical specimens of patients with hand, foot and mouth disease in the Sarawak outbreak in early 2006 also belonged to subgenogroup B5. Phylogenetic analysis of the VP1 gene sequences showed that the four Sarawak EV71 isolates belonged to the same cluster as the EV71 strains that were isolated in peninsular Malaysia as early as May 2005. The data suggested that the EV71 strains causing the outbreak in Sarawak could have originated from peninsular Malaysia.
    Matched MeSH terms: Molecular Sequence Data
  14. Jiang J, Ridley AW, Tang H, Croft BJ, Johnson KN
    Arch Virol, 2008;153(5):839-48.
    PMID: 18299794 DOI: 10.1007/s00705-008-0058-1
    Fiji leaf gall is an important disease of sugarcane in Australia and other Asia-Pacific countries. The causative agent is the reovirus Fiji disease virus (FDV). Previous reports indicate that there is variation in pathology between virus isolates. To investigate the amount of genetic variation found in FDV, 25 field isolates from Australia, Papua New Guinea and Malaysia were analysed by partial sequencing of genome segments S3 and S9. There was up to 15% divergence in the nucleotide sequence among the 25 isolates. A similar amount of divergence and pattern of relationships was found for each of the two genomic segments for most of the field isolates, although reassortment of genome segments seems likely for at least one of the Papua New Guinean isolates. The finding of a high level of variation in FDV isolated in different regions has implications for quarantine and disease management.
    Matched MeSH terms: Molecular Sequence Data
  15. Iskandar ZA, Al-Joudi FS
    Malays J Pathol, 2006 Dec;28(2):101-5.
    PMID: 18376799 MyJurnal
    Survivin is an inhibitor of apoptosis protein and regulates the cell cycle in the G2/M phase. Survivin is expressed during embryonic and fetal development, selectively over-expressed in common human cancers and completely down-regulated in normal adult tissue. This work was aimed at studying the expression of the survivin homologues and their subcellular distribution in fetal and normal adult tissues of rat. Survivin expression was evaluated by immunohistochemistry in formalin-fixed, paraffin-embedded tissue sections of fetal and normal adult tissues of rat using the polyclonal serum SUR12A-CFI. This serum demonstrated intense positive survivin staining in adult kidney, ovary and oviduct, and a variable expression in different fetal organs, with particularly intense expression detected in the adrenal gland, liver, stomach, small intestine, colon, kidney and skin. In both fetal and adult tissues, the expression was predominantly cytoplasmic. It was concluded that survivin was abundantly and prominently expressed during fetal development in rat and that the polyclonal anti-human survivin antibody SUR12A-CFI is reactive with rat survivin.
    Matched MeSH terms: Molecular Sequence Data
  16. Othman RM, Deris S, Illias RM
    J Biomed Inform, 2008 Feb;41(1):65-81.
    PMID: 17681495
    A genetic similarity algorithm is introduced in this study to find a group of semantically similar Gene Ontology terms. The genetic similarity algorithm combines semantic similarity measure algorithm with parallel genetic algorithm. The semantic similarity measure algorithm is used to compute the similitude strength between the Gene Ontology terms. Then, the parallel genetic algorithm is employed to perform batch retrieval and to accelerate the search in large search space of the Gene Ontology graph. The genetic similarity algorithm is implemented in the Gene Ontology browser named basic UTMGO to overcome the weaknesses of the existing Gene Ontology browsers which use a conventional approach based on keyword matching. To show the applicability of the basic UTMGO, we extend its structure to develop a Gene Ontology -based protein sequence annotation tool named extended UTMGO. The objective of developing the extended UTMGO is to provide a simple and practical tool that is capable of producing better results and requires a reasonable amount of running time with low computing cost specifically for offline usage. The computational results and comparison with other related tools are presented to show the effectiveness of the proposed algorithm and tools.
    Matched MeSH terms: Molecular Sequence Data
  17. Quek SP, Davies SJ, Ashton PS, Itino T, Pierce NE
    Mol Ecol, 2007 May;16(10):2045-62.
    PMID: 17498231
    We investigate the geographical and historical context of diversification in a complex of mutualistic Crematogaster ants living in Macaranga trees in the equatorial rain forests of Southeast Asia. Using mitochondrial DNA from 433 ant colonies collected from 32 locations spanning Borneo, Malaya and Sumatra, we infer branching relationships, patterns of genetic diversity and population history. We reconstruct a time frame for the ants' diversification and demographic expansions, and identify areas that might have been refugia or centres of diversification. Seventeen operational lineages are identified, most of which can be distinguished by host preference and geographical range. The ants first diversified 16-20 Ma, not long after the onset of the everwet forests in Sundaland, and achieved most of their taxonomic diversity during the Pliocene. Pleistocene demographic expansions are inferred for several of the younger lineages. Phylogenetic relationships suggest a Bornean cradle and major axis of diversification. Taxonomic diversity tends to be associated with mountain ranges; in Borneo, it is greatest in the Crocker Range of Sabah and concentrated also in other parts of the northern northwest coast. Within-lineage genetic diversity in Malaya and Sumatra tends to also coincide with mountain ranges. A series of disjunct and restricted distributions spanning northern northwest Borneo and the major mountain ranges of Malaya and Sumatra, seen in three pairs of sister lineages, further suggests that these regions were rain-forest refuges during drier climatic phases of the Pleistocene. Results are discussed in the context of the history of Sundaland's rain forests.
    Matched MeSH terms: Molecular Sequence Data
  18. Momynaliev K, Klubin A, Chelysheva V, Selezneva O, Akopian T, Govorun V
    Res. Microbiol., 2007 May;158(4):371-8.
    PMID: 17363224
    Ureaplasma parvum colonizes human mucosal surfaces, primarily in the respiratory and urogenital tracts, causing a wide spectrum of diseases, from non-gonococcal urethritis to pneumonitis in immunocompromised hosts. Although the basis for these diverse clinical outcomes is not yet understood, more severe disease may be associated with strains harboring a certain set of strain-specific genes. To investigate this, whole genome DNA macroarrays were constructed and used to assess genomic diversity in 10 U. parvum clinical strains. We found that 7.6% of U. parvum genes were dispersed into one or more strains, thus defining a minimal functional core of 538 U. parvum genes. Most of the strain-specific genes (79%) were of unknown function and were unique to U. parvum. Four hypervariable plasticity regions were identified in the genome containing 93% of the variability in the gene pool (UU32-UU33, UU145-UU170, UU440-UU447 and UU527-UU529). We hypothesized that one of them (UU145-UU170) was a pathogenicity island in U. parvum and we characterized it. Thus, we propose that the clinical outcome of U. parvum infection is probably associated with this newly identified pathogenicity island.
    Matched MeSH terms: Molecular Sequence Data
  19. Perera D, Yusof MA, Podin Y, Ooi MH, Thao NT, Wong KK, et al.
    Arch Virol, 2007;152(6):1201-8.
    PMID: 17308978
    A phylogenetic analysis of VP1 and VP4 nucleotide sequences of 52 recent CVA16 strains demonstrated two distinct CVA16 genogroups, A and B, with the prototype strain being the only member of genogroup A. CVA16 G-10, the prototype strain, showed a nucleotide difference of 27.7-30.2% and 19.9-25.2% in VP1 and VP4, respectively, in relation to other CVA16 strains, which formed two separate lineages in genogroup B with nucleotide variation of less than 13.4% and less than 16.3% in VP1 and VP4, respectively. Lineage 1 strains circulating before 2000 were later displaced by lineage 2 strains.
    Matched MeSH terms: Molecular Sequence Data
  20. Sharman M, Thomas JE, Skabo S, Holton TA
    Arch Virol, 2008;153(1):135-47.
    PMID: 17978886 DOI: 10.1007/s00705-007-1077-z
    Two isolates of a novel babuvirus causing "bunchy top" symptoms were characterised, one from abacá (Musa textilis) from the Philippines and one from banana (Musa sp.) from Sarawak (Malaysia). The name abacá bunchy top virus (ABTV) is proposed. Both isolates have a genome of six circular DNA components, each ca. 1.0-1.1 kb, analogous to those of isolates of Banana bunchy top virus (BBTV). However, unlike BBTV, both ABTV isolates lack an internal ORF in DNA-R, and the ORF in DNA-U3 found in some BBTV isolates is also absent. In all phylogenetic analyses of nanovirid isolates, ABTV and BBTV fall in the same clade, but on separate branches. However, ABTV and BBTV isolates shared only 79-81% amino acid sequence identity for the putative coat protein and 54-76% overall nucleotide sequence identity across all components. Stem-loop and major common regions were present in ABTV, but there was less than 60% identity with the major common region of BBTV. ABTV and BBTV were also shown to be serologically distinct, with only two out of ten BBTV-specific monoclonal antibodies reacting with ABTV. The two ABTV isolates may represent distinct strains of the species as they are less closely related to each other than are isolates of the two geographic subgroups (Asian and South Pacific) of BBTV.
    Matched MeSH terms: Molecular Sequence Data
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links