Displaying publications 461 - 480 of 1878 in total

Abstract:
Sort:
  1. Kamelian K, Montoya V, Olmstead A, Dong W, Harrigan R, Morshed M, et al.
    Sci Rep, 2019 Nov 11;9(1):16433.
    PMID: 31712570 DOI: 10.1038/s41598-019-52613-8
    In 2018, the World Health Organization identified the Zika virus (ZIKV) as a pathogen that should be prioritized for public health research due to its epidemic potential. In this study, whole-genome sequencing (WGS) of travel-acquired ZIKV infections was used to examine the limitations of phylogenetic analysis. WGS and phylogenetic analysis were performed to investigate geographic clustering of samples from five Canadians with travel-acquired ZIKV infections and to assess the limitations of phylogenetic analysis of ZIKV sequences using a phylogenetic cluster approach. Genomic variability of ZIKV samples was assessed and for context, compared with hepatitis C virus (HCV) samples. Phylogenetic analysis confirmed the suspected region of ZIKV infection for one of five samples and one sample failed to cluster with sequences from its suspected country of infection. Travel-acquired ZIKV samples depicted low genomic variability relative to HCV samples. A floating patristic distance threshold classified all pre-2000 ZIKV sequences into separate clusters, while only Cambodian, Peruvian, Malaysian, and South Korean sequences were similarly classifiable. While phylogenetic analysis of ZIKV data can identify the broad geographical region of ZIKV infection, ZIKV's low genomic variability is likely to limit precise interpretations of phylogenetic analysis of the origins of travel-related cases.
    Matched MeSH terms: Phylogeny*
  2. Tay ST, Kho KL, Lye SF, Ngeow YF
    J Vet Med Sci, 2018 Apr 18;80(4):653-661.
    PMID: 29311425 DOI: 10.1292/jvms.17-0448
    Bartonella bovis is a small Gram-negative bacterium recognized as an etiological agent for bacteremia and endocarditis in cattle. As few reports are available on the taxonomic position of B. bovis and its mechanism of virulence, this study aims to resolve the phylogeny of B. bovis and investigate putative virulence genes based on whole genome sequence analysis. Genome-wide comparisons based on single nucleotide polymorphisms (SNP) and orthologous genes were performed in this study for phylogenetic inference of 27 Bartonella species. Rapid Annotation using Subsystem Technology (RAST) analysis was used for annotation of putative virulence genes. The phylogenetic tree generated from the genome-wide comparison of orthologous genes exhibited a topology almost similar to that of the tree generated from SNP-based comparison, indicating a high concordance in the nucleotide and amino acid sequences of Bartonella spp. The analyses show consistent grouping of B. bovis in a cluster related to ruminant-associated species, including Bartonella australis, Bartonella melophagi and Bartonella schoenbuchensis. RAST analysis revealed genes encoding flagellar components, in corroboration with the observation of flagella-like structure of BbUM strain under negative straining. Genes associated with virulence, disease and defence, prophages, membrane transport, iron acquisition, motility and chemotaxis are annotated in B. bovis genome. The flagellin (flaA) gene of B. bovis is closely related to Bartonella bacilliformis and Bartonella clarridgeiae but distinct from other Gram-negative bacteria. The absence of type IV secretion systems, the bona fide pathogenicity factors of bartonellae, in B. bovis suggests that it may have a different mechanism of pathogenicity.
    Matched MeSH terms: Phylogeny*
  3. Malmstrøm M, Britz R, Matschiner M, Tørresen OK, Hadiaty RK, Yaakob N, et al.
    Genome Biol Evol, 2018 04 01;10(4):1088-1103.
    PMID: 29684203 DOI: 10.1093/gbe/evy058
    The world's smallest fishes belong to the genus Paedocypris. These miniature fishes are endemic to an extreme habitat: the peat swamp forests in Southeast Asia, characterized by highly acidic blackwater. This threatened habitat is home to a large array of fishes, including a number of miniaturized but also developmentally truncated species. Especially the genus Paedocypris is characterized by profound, organism-wide developmental truncation, resulting in sexually mature individuals of <8 mm in length with a larval phenotype. Here, we report on evolutionary simplification in the genomes of two species of the dwarf minnow genus Paedocypris using whole-genome sequencing. The two species feature unprecedented Hox gene loss and genome reduction in association with their massive developmental truncation. We also show how other genes involved in the development of musculature, nervous system, and skeleton have been lost in Paedocypris, mirroring its highly progenetic phenotype. Further, our analyses suggest two mechanisms responsible for the genome streamlining in Paedocypris in relation to other Cypriniformes: severe intron shortening and reduced repeat content. As the first report on the genomic sequence of a vertebrate species with organism-wide developmental truncation, the results of our work enhance our understanding of genome evolution and how genotypes are translated to phenotypes. In addition, as a naturally simplified system closely related to zebrafish, Paedocypris provides novel insights into vertebrate development.
    Matched MeSH terms: Phylogeny*
  4. Oulghazi S, Cigna J, Lau YY, Moumni M, Chan KG, Faure D
    Int J Syst Evol Microbiol, 2019 Feb;69(2):470-475.
    PMID: 30601112 DOI: 10.1099/ijsem.0.003180
    Pectobacterium carotovorum M022T has been isolated from a waterfall source in Selangor district (Malaysia). Using genomic and phenotypic tests, we re-examined the taxonomical position of this strain. Based on 14 concatenated housekeeping genes (fusA, rpoD, rpoS, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA and rplB), multi-locus sequence analysis revealed that strain M022T falls into a novel clade separated from the other Pectobacterium species. The in silico DNA-DNA hybridization and average nucleotide identity values were lower than the 70 and 95 % threshold values, respectively. In addition, by combining genomic and phenotypic tests, strain M022T may be distinguished from the other Pectobacterium isolates by its incapacity to grow on d(+)-xylose, l-rhamnose, cellobiose and lactose. Strain M022T (=CFBP 8629T=LMG 30744T) is proposed as the type strain of the Pectobacteriumfontis sp. nov.
    Matched MeSH terms: Phylogeny*
  5. Wardhana AH, Hall MJ, Mahamdallie SS, Muharsini S, Cameron MM, Ready PD
    Int J Parasitol, 2012 Jul;42(8):729-38.
    PMID: 22664061 DOI: 10.1016/j.ijpara.2012.04.017
    Phylogenetic, genealogical and population relationships of Chrysomya bezziana, the Old World screwworm fly (OWSF), were inferred from DNA sequences of mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and nuclear white eye colour (white), using sequences of Chrysomya megacephala and Chrysomya rufifacies as outgroups. Cyt b (717bp, 754 specimens), EF-1α (361bp, 256 specimens) and white (577bp, 242 specimens) were analysed from up to two African and nine Asian countries, including 10 Indonesian islands. We show that OWSF occurs as distinctive African and Asian lineages based on cyt b and white, and that there is a marked differentiation between Sumatran and Javan populations in Indonesia, supported by the genealogy and analysis of molecular variance of cyt b alone. Four cyt b sub-lineages are recognised in Asia: only 2.1 occurs on the Asian mainland, from Yemen to Peninsular Malaysia; only 2.2, 2.3 and 2.4 occur in central Indonesia; 2.4 predominates on New Guinea; and 2.1 co-occurs with others only on Sumatra in western Indonesia. This phylogeography and the genetic distances between cyt b haplotypes indicate pre-historic, natural dispersal of OWSF eastwards into Indonesia and other Malesian islands, followed by vicariant evolution in New Guinea and central Indonesia. OWSF is absent from Australia, where there is surveillance for importation or natural invasion. Judged by cyt b haplotype markers, there is currently little spread of OWSF across sea barriers, despite frequent shipments of Australian livestock through Indonesian seas to the Middle East Gulf region. These findings will inform plans for integrated pest management, which could be applied progressively, for example starting in East Nusa Tenggara (central Indonesia) where OWSF has regional cyt b markers, and progressing westwards to Java where any invasion from Sumatra is unlikely. Cyt b markers would help identify the source of any re-emergence in treated areas.
    Matched MeSH terms: Phylogeny*
  6. Kushwaha SK, Bhavesh NLS, Abdella B, Lahiri C, Marathe SA
    Sci Rep, 2020 12 03;10(1):21156.
    PMID: 33273523 DOI: 10.1038/s41598-020-77890-6
    Salmonellae display intricate evolutionary patterns comprising over 2500 serovars having diverse pathogenic profiles. The acquisition and/or exchange of various virulence factors influences the evolutionary framework. To gain insights into evolution of Salmonella in association with the CRISPR-Cas genes we performed phylogenetic surveillance across strains of 22 Salmonella serovars. The strains differed in their CRISPR1-leader and cas operon features assorting into two main clades, CRISPR1-STY/cas-STY and CRISPR1-STM/cas-STM, comprising majorly typhoidal and non-typhoidal Salmonella serovars respectively. Serovars of these two clades displayed better relatedness, concerning CRISPR1-leader and cas operon, across genera than between themselves. This signifies the acquisition of CRISPR1/Cas region could be through a horizontal gene transfer event owing to the presence of mobile genetic elements flanking CRISPR1 array. Comparison of CRISPR and cas phenograms with that of multilocus sequence typing (MLST) suggests differential evolution of CRISPR/Cas system. As opposed to broad-host-range, the host-specific serovars harbor fewer spacers. Mapping of protospacer sources suggested a partial correlation of spacer content with habitat diversity of the serovars. Some serovars like serovar Enteritidis and Typhimurium that inhabit similar environment/infect similar hosts hardly shared their protospacer sources.
    Matched MeSH terms: Phylogeny*
  7. Yoke-Fun C, AbuBakar S
    BMC Microbiol, 2006 Aug 30;6:74.
    PMID: 16939656
    BACKGROUND: Human enterovirus 71 (EV-71) is a common causative agent of hand, foot and mouth disease (HFMD). In recent years, the virus has caused several outbreaks with high numbers of deaths and severe neurological complications. Several new EV-71 subgenotypes were identified from these outbreaks. The mechanisms that contributed to the emergence of these subgenotypes are unknown.

    RESULTS: Six EV-71 isolates from an outbreak in Malaysia, in 1997, were sequenced completely. These isolates were identified as EV-71 subgenotypes, B3, B4 and C2. A phylogenetic tree that correlated well with the present enterovirus classification scheme was established using these full genome sequences and all other available full genome sequences of EV-71 and human enterovirus A (HEV-A). Using the 5' UTR, P2 and P3 genomic regions, however, isolates of EV-71 subgenotypes B3 and C4 segregated away from other EV-71 subgenotypes into a cluster together with coxsackievirus A16 (CV-A16/G10) and EV-71 subgenotype C2 clustered with CV-A8. Results from the similarity plot analyses supported the clustering of these isolates with other HEV-A. In contrast, at the same genomic regions, a CV-A16 isolate, Tainan5079, clustered with EV-71. This suggests that amongst EV-71 and CV-A16, only the structural genes were conserved. The 3' end of the virus genome varied and consisted of sequences highly similar to various HEV-A viruses. Numerous recombination crossover breakpoints were identified within the non-structural genes of some of these newer EV-71 subgenotypes.

    CONCLUSION: Phylogenetic evidence obtained from analyses of the full genome sequence supports the possible occurrence of inter-typic recombination involving EV-71 and various HEV-A, including CV-A16, the most common causal agent of HFMD. It is suggested that these recombination events played important roles in the emergence of the various EV-71 subgenotypes.

    Matched MeSH terms: Phylogeny*
  8. Durden LA, Beaucournu JC
    Parasite, 2006 Sep;13(3):215-26.
    PMID: 17007213 DOI: 10.1051/parasite/2006133215
    Gryphopsylla maxomydis n. sp. (Pygiopsyllidae), Medwayella rubrisciurae n. sp. (Pygiopsyllidae) and Macrostylophora theresae n. sp. (Ceratophyllidae) are described from endemic rodents in Sulawesi. Gryphopsylla maxomydis was collected from the murids Maxomys musschenbroekii and Paruromys dominator in Central Sulawesi (Sulawesi Tengah). However, M. musschenbroekii appears to be the true host of this flea because it has spiny pelage and G. maxomydis shows morphological adaptations for parasitizing spiny hosts including a remarkable "beak-like" structure on the head. This adatation is similar to a beak-like structure on the head of Gryphopsyllo hopkinsi (Traub) which parasitizes the spiny murid Maxomys whiteheadi in Borneo (Sabah). Medwayella rubrisciurae was collected from the large tree squirrel Rubrisciurus rubriventer in Central Sulawesi and this represents the first report of this flea genus in Sulawesi. Macrostylophora theresce was recorded from the murids Bunomys fratrorum, P. dominator and Rattus xanthurus in North Sulawesi (Sulawesi Utara); most other members of this flea genus parasitize squirrels in the Oriental and Palaearctic zoogeographical regions.
    Matched MeSH terms: Phylogeny*
  9. Fong MY, Asha T, Azdayanti M, Yee LL, Sinnadurai S, Rohela M
    Trop Biomed, 2008 Apr;25(1):87-92.
    PMID: 18600209 MyJurnal
    This paper presents the first reported use of 18S rRNA gene sequence to determine the phylogeny of Brugia pahangi. The 18S rRNA nucleotide sequence of a Malaysian B. pahangi isolate was obtained by PCR cloning and sequencing. The sequence was compared with 18S rRNA sequences of other nematodes, including those of some filarial nematodes. Multiple alignment and homology analysis suggest that B. pahangi is closely related to B. malayi and Wuchereria bancrofti. Phylogenetic trees constructed using Neighbour Joining, Minimum Evolution and Maximum Parsimony methods correctly grouped B. pahangi with other filarial nematodes, with closest relationship with B. malayi and W. bancrofti. The phylogeny of B. pahangi obtained in this study is in concordance with those previously reported, in which the 5S rRNA gene spacer region and cytochrome oxidase subunit I (COI) sequences were used.
    Matched MeSH terms: Phylogeny*
  10. Hill C, Soares P, Mormina M, Macaulay V, Meehan W, Blackburn J, et al.
    Mol Biol Evol, 2006 Dec;23(12):2480-91.
    PMID: 16982817
    Studying the genetic history of the Orang Asli of Peninsular Malaysia can provide crucial clues to the peopling of Southeast Asia as a whole. We have analyzed mitochondrial DNA (mtDNAs) control-region and coding-region markers in 447 mtDNAs from the region, including 260 Orang Asli, representative of each of the traditional groupings, the Semang, the Senoi, and the Aboriginal Malays, allowing us to test hypotheses about their origins. All of the Orang Asli groups have undergone high levels of genetic drift, but phylogeographic traces nevertheless remain of the ancestry of their maternal lineages. The Semang have a deep ancestry within the Malay Peninsula, dating to the initial settlement from Africa >50,000 years ago. The Senoi appear to be a composite group, with approximately half of the maternal lineages tracing back to the ancestors of the Semang and about half to Indochina. This is in agreement with the suggestion that they represent the descendants of early Austroasiatic speaking agriculturalists, who brought both their language and their technology to the southern part of the peninsula approximately 4,000 years ago and coalesced with the indigenous population. The Aboriginal Malays are more diverse, and although they show some connections with island Southeast Asia, as expected, they also harbor haplogroups that are either novel or rare elsewhere. Contrary to expectations, complete mtDNA genome sequences from one of these, R9b, suggest an ancestry in Indochina around the time of the Last Glacial Maximum, followed by an early-Holocene dispersal through the Malay Peninsula into island Southeast Asia.
    Matched MeSH terms: Phylogeny*
  11. Pramual P, Bunchom N, Saijuntha W, Tada I, Suganuma N, Agatsuma T
    Trop Biomed, 2019 Dec 01;36(4):938-957.
    PMID: 33597465
    Genetic variation based on mitochondrial cytochrome c oxidase I (COI) and II (COII) sequences was investigated for three black fly nominal species, Simulium metallicum Bellardi complex, S. callidum Dyar and Shannon, and S. ochraceum Walker complex, which are vectors of human onchocerciasis from Guatemala. High levels of genetic diversity were found in S. metallicum complex and S. ochraceum complex with maximum intraspecific genetic divergences of 11.39% and 4.25%, respectively. Levels of genetic diversity of these nominal species are consistent with species status for both of them as they are cytologically complexes of species. Phylogenetic analyses revealed that the S. metallicum complex from Guatemala divided into three distinct clades, two with members of this species from several Central and South American countries and another exclusively from Mexico. The Simulium ochraceum complex from Guatemala formed a clade with members of this species from Mexico and Costa Rica while those from Ecuador and Colombia formed another distinct clade. Very low diversity in S. callidum was found for both genes with maximum intraspecific genetic divergence of 0.68% for COI and 0.88% for COII. Low genetic diversity in S. callidum might be a consequence of the result being informative of only recent population history of the species.
    Matched MeSH terms: Phylogeny*
  12. Sukantamala J, Sing KW, Jaturas N, Polseela R, Wilson JJ
    PMID: 27759464 DOI: 10.1080/24701394.2016.1214728
    Certain species of Phlebotomine sandflies (Diptera: Psychodidae) are vectors of the protozoa which causes leishmaniasis. Sandflies are found breeding in enclosed places like caves. Thailand is a popular tourist destination, including for ecotourism activities like caving, which increases the risk of contact between tourists and sandflies. Surveillance of sandflies is important for monitoring this risk but identification of species based on morphology is challenged by phenotypic plasticity and cryptic diversity. DNA barcodes have been used for the identification of sandflies in Thailand. We collected sandflies using CDC light trap from four tourist caves in Northern Thailand. Female sandflies were provisionally sorted into 13 morphospecies and 19 unidentified specimens. DNA was extracted from the thorax and legs of sandflies and the DNA barcode region of cytochrome c oxidase I mtDNA amplified and sequenced. The specimens were sorted into 22 molecular operational taxonomic units (MOTU) based on the 145 DNA barcodes, which is significantly more than the morphospecies. Several of the taxa thought to be present in multiple caves, based on morphospecies sorting, split into cave-specific MOTU which likely represent cryptic species. Several MOTU reported in an earlier study from Wihan Cave, Thailand, were also found in these caves. This supports the use of DNA barcodes to investigate species diversity of sandflies and their useful role in surveillance of sandflies in Thailand.
    Matched MeSH terms: Phylogeny*
  13. Tan KK, Zulkifle NI, Sulaiman S, Pang SP, NorAmdan N, MatRahim N, et al.
    BMC Evol. Biol., 2018 04 24;18(1):58.
    PMID: 29699483 DOI: 10.1186/s12862-018-1175-4
    BACKGROUND: Dengue virus type 3 genotype III (DENV3/III) is associated with increased number of severe infections when it emerged in the Americas and Asia. We had previously demonstrated that the DENV3/III was introduced into Malaysia in the late 2000s. We investigated the genetic diversity of DENV3/III strains recovered from Malaysia and examined their phylogenetic relationships against other DENV3/III strains isolated globally.

    RESULTS: Phylogenetic analysis revealed at least four distinct DENV3/III lineages. Two of the lineages (DENV3/III-B and DENV3/III-C) are current actively circulating whereas the DENV3/III-A and DENV3/III-D were no longer recovered since the 1980s. Selection pressure analysis revealed strong evidence of positive selection on a number of amino acid sites in PrM, E, NS1, NS2a, NS2b, NS3, NS4a, and NS5. The Malaysian DENV3/III isolates recovered in the 1980s (MY.59538/1987) clustered into DENV3/III-B, which was the lineage with cosmopolitan distribution consisting of strains actively circulating in the Americas, Africa, and Asia. The Malaysian isolates recovered after the 2000s clustered within DENV3/III-C. This DENV3/III-C lineage displayed a more restricted geographical distribution and consisted of isolates recovered from Asia, denoted as the Asian lineage. Amino acid variation sites in NS5 (NS5-553I/M, NS5-629 T, and NS5-820E) differentiated the DENV3/III-C from other DENV3 viruses. The codon 629 of NS5 was identified as a positively selected site. While the NS5-698R was identified as unique to the genome of DENV3/III-C3. Phylogeographic results suggested that the recent Malaysian DENV3/III-C was likely to have been introduced from Singapore in 2008 and became endemic. From Malaysia, the virus subsequently spread into Taiwan and Thailand in the early part of the 2010s and later reintroduced into Singapore in 2013.

    CONCLUSIONS: Distinct clustering of the Malaysian old and new DENV3/III isolates suggests that the currently circulating DENV3/III in Malaysia did not descend directly from the strains recovered during the 1980s. Phylogenetic analyses and common genetic traits in the genome of the strains and those from the neighboring countries suggest that the Malaysian DENV3/III is likely to have been introduced from the neighboring regions. Malaysia, however, serves as one of the sources of the recent regional spread of DENV3/III-C3 within the Asia region.

    Matched MeSH terms: Phylogeny*
  14. Dai X, Mak YL, Lu CK, Mei HH, Wu JJ, Lee WH, et al.
    Harmful Algae, 2017 07;67:107-118.
    PMID: 28755713 DOI: 10.1016/j.hal.2017.07.002
    Recent molecular phylogenetic studies of Gambierdiscus species flagged several new species and genotypes, thus leading to revitalizing its systematics. The inter-relationships of clades revealed by the primary sequence information of nuclear ribosomal genes (rDNA), however, can sometimes be equivocal, and therefore, in this study, the taxonomic status of a ribotype, Gambierdiscus sp. type 6, was evaluated using specimens collected from the original locality, Marakei Island, Republic of Kiribati; and specimens found in Rawa Island, Peninsular Malaysia, were further used for comparison. Morphologically, the ribotype cells resembled G. scabrosus, G. belizeanus, G. balechii, G. cheloniae and G. lapillus in thecal ornamentation, where the thecal surfaces are reticulate-foveated, but differed from G. scabrosus by its hatchet-shaped Plate 2', and G. belizeanus by the asymmetrical Plate 3'. To identify the phylogenetic relationship of this ribotype, a large dataset of the large subunit (LSU) and small subunit (SSU) rDNAs were compiled, and performed comprehensive analyses, using Bayesian-inference, maximum-parsimony, and maximum-likelihood, for the latter two incorporating the sequence-structure information of the SSU rDNA. Both the LSU and SSU rDNA phylogenetic trees displayed an identical topology and supported the hypothesis that the relationship between Gambierdiscus sp. type 6 and G. balechii was monophyletic. As a result, the taxonomic status of Gambierdiscus sp. type 6 was revised, and assigned as Gambierdiscus balechii. Toxicity analysis using neuroblastoma N2A assay confirmed that the Central Pacific strains were toxic, ranging from 1.1 to 19.9 fg P-CTX-1 eq cell-1, but no toxicity was detected in a Western Pacific strain. This suggested that the species might be one of the species contributing to the high incidence rate of ciguatera fish poisoning in Marakei Island.
    Matched MeSH terms: Phylogeny*
  15. Beck SV, Carvalho GR, Barlow A, Rüber L, Hui Tan H, Nugroho E, et al.
    PLoS One, 2017;12(7):e0179557.
    PMID: 28742862 DOI: 10.1371/journal.pone.0179557
    The complex climatic and geological history of Southeast Asia has shaped this region's high biodiversity. In particular, sea level fluctuations associated with repeated glacial cycles during the Pleistocene both facilitated, and limited, connectivity between populations. In this study, we used data from two mitochondrial and three anonymous nuclear markers to determine whether a fresh/brackish water killifish, Aplocheilus panchax, Hamilton, 1822, could be used to further understand how climatic oscillations and associated sea level fluctuations have shaped the distribution of biota within this region, and whether such patterns show evidence of isolation within palaeodrainage basins. Our analyses revealed three major mitochondrial clades within A. panchax. The basal divergence of A. panchax mitochondrial lineages was approximately 3.5 Ma, whilst the subsequent divergence timings of these clades occurred early Pleistocene (~2.6 Ma), proceeding through the Pleistocene. Continuous phylogeographic analysis showed a clear west-east dispersal followed by rapid radiation across Southeast Asia. Individuals from Krabi, just north of the Isthmus of Kra, were more closely related to the Indian lineages, providing further evidence for a freshwater faunal disjunction at the Isthmus of Kra biogeographic barrier. Our results suggest that Sulawesi, across the Wallace Line, was colonised relatively recently (~30 ka). Nuclear DNA is less geographically structured, although Mantel tests indicated that nuclear genetic distances were correlated with geographic proximity. Overall, these results imply that recent gene flow, as opposed to historical isolation, has been the key factor determining patterns of nuclear genetic variation in A. panchax, however, some evidence of historical isolation is retained within the mitochondrial genome. Our study further validates the existence of a major biogeographic boundary at the Kra Isthmus, and also demonstrates the use of widely distributed fresh/brackishwater species in phylogeographic studies, and their ability to disperse across major marine barriers in relatively recent time periods.
    Matched MeSH terms: Phylogeny*
  16. Lithanatudom SK, Chaowasku T, Nantarat N, Jaroenkit T, Smith DR, Lithanatudom P
    Sci Rep, 2017 07 27;7(1):6716.
    PMID: 28751754 DOI: 10.1038/s41598-017-07045-7
    Dimocarpus longan, commonly known as the longan, belongs to the family Sapindaceae, and is one of the most economically important fruits commonly cultivated in several regions in Asia. There are various cultivars of longan throughout the Thai-Malay peninsula region, but until now no phylogenetic analysis has been undertaken to determine the genetic relatedness of these cultivars. To address this issue, 6 loci, namely ITS2, matK, rbcL, trnH-psbA, trnL-I and trnL-trnF were amplified and sequenced from 40 individuals consisting of 26 longan cultivars 2 types of lychee and 8 herbarium samples. The sequencing results were used to construct a phylogenetic tree using the neighbor-joining (NJ), maximum likelihood (ML) and Bayesian inference (BI) criteria. The tree showed cryptic groups of D. longan from the Thailand-Malaysia region (Dimocarpus longan spp.). This is the first report of the genetic relationship of Dimocarpus based on multi-locus molecular markers and morphological characteristics. Multiple sequence alignments, phylogenetic trees and species delimitation support that Dimocarpus longan spp. longan var. obtusus and Dimocarpus longan spp. malesianus var. malesianus should be placed into a higher order and are two additional species in the genus Dimocarpus. Therefore these two species require nomenclatural changes as Dimocarpus malesianus and Dimocarpus obtusus, respectively.
    Matched MeSH terms: Phylogeny*
  17. Sun J, Zhang H, Tan Q, Zhou H, Guan D, Zhang X, et al.
    Sci Rep, 2018 07 02;8(1):9976.
    PMID: 29967414 DOI: 10.1038/s41598-018-28349-2
    In 2015, an unexpected multiple outbreak of dengue occurred in Guangdong, China. In total, 1,699 cases were reported, of which 1,627 cases were verified to have DENV infections by nucleic acid or NS1 protein, including 44 DENV-1, 1126 DENV-2, 18 DENV-3 and 6 DENV-4, and the other cases were confirmed by NS1 ELISA. Phylogenetic analyses of DENV-1 isolates identified two genotypes (I and V). The predominant DENV-2 outbreak isolates were the Cosmopolitan genotypes, which likely originated from Malaysia. The DENV-3 isolates were assigned into genotype I and genotype III. All 6 DENV-4 isolates from imported cases were likely originally from Cambodia, Thailand and the Philippines. The entomological surveillance showed a moderate risk for the BI index in Chaozhou and Foshan and a low risk in Guangzhou. The imported cases were mostly detected in Guangzhou and Foshan. Surprisingly, the most serious outbreak occurred in Chaozhou, but not in Guangzhou or Foshan. A combined analyses demonstrated the multiple geographical origins of this outbreak, and highlight the detection of suspected cases after the alerting of imported cases, early implementation of control policies and reinforce the vector surveillance strategies were the key points in the chain of prevention and control of dengue epidemics.
    Matched MeSH terms: Phylogeny*
  18. Tan MH, Gan HM, Lee YP, Linton S, Grandjean F, Bartholomei-Santos ML, et al.
    Mol Phylogenet Evol, 2018 10;127:320-331.
    PMID: 29800651 DOI: 10.1016/j.ympev.2018.05.015
    The infraorder Anomura consists of a morphologically and ecologically heterogeneous group of decapod crustaceans, and has attracted interest from taxonomists for decades attempting to find some order out of the seemingly chaotic diversity within the group. Species-level diversity within the Anomura runs the gamut from the "hairy" spindly-legged yeti crab found in deep-sea hydrothermal vent environments to the largest known terrestrial invertebrate, the robust coconut or robber crab. Owing to a well-developed capacity for parallel evolution, as evidenced by the occurrence of multiple independent carcinization events, Anomura has long tested the patience and skill of both taxonomists attempting to find order, and phylogeneticists trying to establish stable hypotheses of evolutionary inter-relationships. In this study, we performed genome skimming to recover the mitogenome sequences of 12 anomuran species including the world's largest extant invertebrate, the robber crab (Birgus latro), thereby over doubling these resources for this group, together with 8 new brachyuran mitogenomes. Maximum-likelihood (ML) and Bayesian-inferred (BI) phylogenetic reconstructions based on amino acid sequences from mitogenome protein-coding genes provided strong support for the monophyly of the Anomura and Brachyura and their sister relationship, consistent with previous studies. The majority of relationships within families were supported and were largely consistent with current taxonomic classifications, whereas many relationships at higher taxonomic levels were unresolved. Nevertheless, we have strong support for a polyphyletic Paguroidea and recovered a well-supported clade of a subset of paguroids (Diogenidae + Coenobitidae) basal to all other anomurans, though this requires further testing with greater taxonomic sampling. We also introduce a new feature to the MitoPhAST bioinformatics pipeline (https://github.com/mht85/MitoPhAST) that enables the extraction of mitochondrial gene order (MGO) information directly from GenBank files and clusters groups based on common MGOs. Using this tool, we compared MGOs across the Anomura and Brachyura, identifying Anomura as a taxonomic "hot spot" with high variability in MGOs among congeneric species from multiple families while noting the broad association of highly-rearranged MGOs with several anomuran lineages inhabiting extreme niches. We also demonstrate the value of MGOs as a source of novel synapomorphies for independently reinforcing tree-based relationships and for shedding light on relationships among challenging groups such as the Aegloidea and Lomisoidea that were unresolved in phylogenetic reconstructions. Overall, this study contributes a substantial amount of new genetic material for Anomura and attempts to further resolve anomuran evolutionary relationships where possible based on a combination of sequence and MGO information. The new feature in MitoPhAST adds to the relatively limited number of bioinformatics tools available for MGO analyses, which can be utilized widely across animal groups.
    Matched MeSH terms: Phylogeny*
  19. Bunlungsup S, Imai H, Hamada Y, Matsudaira K, Malaivijitnond S
    Am J Primatol, 2017 02;79(2):1-13.
    PMID: 27643851 DOI: 10.1002/ajp.22596
    Macaca fascicularis fascicularis is distributed over a wide area of Southeast Asia. Thailand is located at the center of their distribution range and is the bridge connecting the two biogeographic regions of Indochina and Sunda. However, only a few genetic studies have explored the macaques in this region. To shed some light on the evolutionary history of M. f. fascicularis, including hybridization with M. mulatta, M. f. fascicularis and M. mulatta samples of known origins throughout Thailand and the vicinity were analyzed by molecular phylogenetics using mitochondrial DNA (mtDNA), including the hypervariable region 1, and Y-chromosomal DNA, including SRY and TSPY genes. The mtDNA phylogenetic analysis divided M. f. fascicularis into five subclades (Insular Indonesia, Sundaic Thai Gulf, Vietnam, Sundaic Andaman sea coast, and Indochina) and revealed genetic differentiation between the two sides of the Thai peninsula, which had previously been reported as a single group of Malay peninsular macaques. From the estimated divergence time of the Sundaic Andaman sea coast subclade, it is proposed that after M. f. fascicularis dispersed throughout Southeast Asia, some populations on the south-easternmost Indochina (eastern Thailand, southern Cambodia and southern Vietnam at the present time) migrated south-westwards across the land bridge, which was exposed during the glacial period of the late Pleistocene epoch, to the southernmost Thailand/northern peninsular Malaysia. Then, some of them migrated north and south to colonize the Thai Andaman sea coast and northern Sumatra, respectively. The SRY-TSPY phylogenetic analysis suggested that male-mediated gene flow from M. mulatta southward to M. f. fascicularis was restricted south of, but close to, the Isthmus of Kra. There was a strong impact of the geographical factors in Thailand, such as the Isthmus of Kra, Nakhon Si Thammarat, and Phuket ranges and Sundaland, on M. f. fascicularis biogeography and their hybridization with M. mulatta.
    Matched MeSH terms: Phylogeny*
  20. Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG, Hélias V, et al.
    Int J Syst Evol Microbiol, 2016 Dec;66(12):5379-5383.
    PMID: 27692046 DOI: 10.1099/ijsem.0.001524
    Pectobacterium wasabiae was originally isolated from Japanese horseradish (Eutrema wasabi), but recently some Pectobacterium isolates collected from potato plants and tubers displaying blackleg and soft rot symptoms were also assigned to P. wasabiae. Here, combining genomic and phenotypical data, we re-evaluated their taxonomic position. PacBio and Illumina technologies were used to complete the genome sequences of P. wasabiae CFBP 3304T and RNS 08-42-1A. Multi-locus sequence analysis showed that the P. wasabiae strains RNS 08-42-1A, SCC3193, CFIA1002 and WPP163, which were collected from potato plant environment, constituted a separate clade from the original Japanese horseradish P. wasabiae. The taxonomic position of these strains was also supported by calculation of the in-silico DNA-DNA hybridization, genome average nucleotide indentity, alignment fraction and average nucleotide indentity values. In addition, they were phenotypically distinguished from P. wasabiae strains by producing acids from (+)-raffinose, α-d(+)-α-lactose, d(+)-galactose and (+)-melibiose but not from methyl α-d-glycopyranoside, (+)-maltose or malonic acid. The name Pectobacterium parmentieri sp. nov. is proposed for this taxon; the type strain is RNS 08-42-1AT (=CFBP 8475T=LMG 29774T).
    Matched MeSH terms: Phylogeny*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links