Displaying publications 481 - 500 of 961 in total

Abstract:
Sort:
  1. El-Sayed NN, Alafeefy AM, Bakht MA, Masand VH, Aldalbahi A, Chen N, et al.
    Molecules, 2016 Dec 02;21(12).
    PMID: 27918459
    Some novel hydrazone derivatives 6a-o were synthesized from the key intermediate 4-Chloro-N-(2-hydrazinocarbonyl-phenyl)-benzamide 5 and characterized using IR, ¹H-NMR, 13C-NMR, mass spectroscopy and elemental analysis. The inhibitory potential against two secretory phospholipase A₂ (sPLA₂), three protease enzymes and eleven bacterial strains were evaluated. The results revealed that all compounds showed preferential inhibition towards hGIIA isoform of sPLA₂ rather than DrG-IB with compounds 6l and 6e being the most active. The tested compounds exhibited excellent antiprotease activity against proteinase K and protease from Bacillus sp. with compound 6l being the most active against both enzymes. Furthermore, the maximum zones of inhibition against bacterial growth were exhibited by compounds; 6a, 6m, and 6o against P. aeruginosa; 6a, 6b, 6d, 6f, 6l, 6m, 6n, and 6o against Serratia; 6k against S. mutans; and compounds 6a, 6d, 6e, 6m, and 6n against E. feacalis. The docking simulations of hydrazones 6a-o with GIIA sPLA₂, proteinase K and hydrazones 6a-e with glutamine-fructose-6-phosphate transaminase were performed to obtain information regarding the mechanism of action.
  2. Teow SY, Wong MM, Yap HY, Peh SC, Shameli K
    Molecules, 2018 06 06;23(6).
    PMID: 29882775 DOI: 10.3390/molecules23061366
    Nanoparticles (NPs) are nano-sized particles (generally 1⁻100 nm) that can be synthesized through various methods. The wide range of physicochemical characteristics of NPs permit them to have diverse biological functions. These particles are versatile and can be adopted into various applications, particularly in biomedical field. In the past five years, NPs’ roles in biomedical applications have drawn considerable attentions, and novel NPs with improved functions and reduced toxicity are continuously increasing. Extensive studies have been carried out in evaluating antibacterial potentials of NPs. The promising antibacterial effects exhibited by NPs highlight the potential of developing them into future generation of antimicrobial agents. There are various methods to synthesize NPs, and each of the method has significant implication on the biological action of NPs. Among all synthetic methods, green technology is the least toxic biological route, which is particularly suitable for biomedical applications. This mini-review provides current update on the antibacterial effects of NPs synthesized by green technology using plants. Underlying challenges in developing NPs into future antibacterials in clinics are also discussed at the present review.
  3. Rusdi NA, Goh HH, Sabri S, Ramzi AB, Mohd Noor N, Baharum SN
    Molecules, 2018 06 06;23(6).
    PMID: 29882808 DOI: 10.3390/molecules23061370
    Polygonum minus (syn. Persicaria minor) is a herbal plant that is well known for producing sesquiterpenes, which contribute to its flavour and fragrance. This study describes the cloning and functional characterisation of PmSTPS1 and PmSTPS2, two sesquiterpene synthase genes that were identified from P. minus transcriptome data mining. The full-length sequences of the PmSTPS1 and PmSTPS2 genes were expressed in the E. coli pQE-2 expression vector. The sizes of PmSTPS1 and PmSTPS2 were 1098 bp and 1967 bp, respectively, with open reading frames (ORF) of 1047 and 1695 bp and encoding polypeptides of 348 and 564 amino acids, respectively. The proteins consist of three conserved motifs, namely, Asp-rich substrate binding (DDxxD), metal binding residues (NSE/DTE), and cytoplasmic ER retention (RxR), as well as the terpene synthase family N-terminal domain and C-terminal metal-binding domain. From the in vitro enzyme assays, using the farnesyl pyrophosphate (FPP) substrate, the PmSTPS1 enzyme produced multiple acyclic sesquiterpenes of β-farnesene, α-farnesene, and farnesol, while the PmSTPS2 enzyme produced an additional nerolidol as a final product. The results confirmed the roles of PmSTPS1 and PmSTPS2 in the biosynthesis pathway of P. minus, to produce aromatic sesquiterpenes.
  4. Chong YM, How KY, Yin WF, Chan KG
    Molecules, 2018 04 21;23(4).
    PMID: 29690523 DOI: 10.3390/molecules23040972
    The quorum sensing (QS) system has been used by many opportunistic pathogenic bacteria to coordinate their virulence determinants in relation to cell-population density. As antibiotic-resistant bacteria are on the rise, interference with QS has been regarded as a novel way to control bacterial infections. As such, many plant-based natural products have been widely explored for their therapeutic roles. These natural products may contain anti-QS compounds that could block QS signals generation or transmission to combat QS pathogens. In this study, we report the anti-QS activities of four different Chinese herbal plant extracts: Poria cum Radix pini, Angelica dahurica, Rhizoma cibotii and Schizonepeta tenuifolia, on Pseudomonas aeruginosa PAO1. All the plants extracted using hexane, chloroform and methanol were tested and found to impair swarming motility and pyocyanin production in P.aeruginosa PAO1, particularly by Poria cum Radix pini. In addition, all the plant extracts also inhibited violacein production in C.violaceum CV026 up to 50% while bioluminescence activities were reduced in lux-based E. coli biosensors, pSB401 and pSB1075, up to about 57%. These anti-QS properties of the four medicinal plants are the first documentation that demonstrates a potential approach to attenuate pathogens’ virulence determinants.
  5. Sim TY, Harith HH, Tham CL, Md Hashim NF, Shaari K, Sulaiman MR, et al.
    Molecules, 2018 Jun 05;23(6).
    PMID: 29874809 DOI: 10.3390/molecules23061355
    Alveolar epithelial barrier dysfunction contributes to lung edema and can lead to acute lung injury (ALI). The features include increased epithelial permeability, upregulation of inflammatory mediators and downregulation of junctional complex molecules; these changes are often induced by inflammation. tHGA is an acetophenone analogue with therapeutic potential in asthma. Its therapeutic potential in ALI is presently unknown. Herein, the effects of tHGA on epithelial barrier dysfunction were determined in TNF-α-induced human alveolar epithelial cells. The anti-inflammatory properties of tHGA were assessed by monocyte adhesion assay and analysis of MCP-1 and ICAM-1 expression. The epithelial barrier function was assessed by paracellular permeability and transepithelial electrical resistance (TEER) assays, and analysis of junctional complex molecules expression. To elucidate the mechanism of action, the effects of tHGA on the NF-κB and MAPK pathways were determined. Gene and protein expression were analyzed by RT-PCR and Western blotting or ELISA, respectively. tHGA suppressed leukocyte adhesion to TNF-α-induced epithelium and reduced MCP-1 and ICAM-1 gene expression and secretion. tHGA also increased TEER readings, reduced epithelial permeability and enhanced expression of junctional complex molecules (zona occludens-1, occludin and E-cadherin) in TNF-α-induced cells. Correspondingly, the NF-κB, ERK and p38 MAPK pathways were also inhibited by tHGA. These findings suggest that tHGA is able to preserve alveolar epithelial barrier function in response to acute inflammation, via its anti-inflammatory activity and stabilization of epithelial barrier integrity, mediated by NF-κB, ERK and p38 MAPK signaling.
  6. Gubartallah EA, Makahleh A, Quirino JP, Saad B
    Molecules, 2018 05 08;23(5).
    PMID: 29738463 DOI: 10.3390/molecules23051112
    A rapid and green analytical method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (C⁴D) for the determination of eight environmental pollutants, the biogenic amines (putrescine, cadaverine, spermidine, spermine, tyramine, 2-phenylamine, histamine and tryptamine), is described. The separation was achieved under normal polarity mode at 24 °C and 25 kV with a hydrodynamic injection (50 mbar for 5 s) and using a bare fused-silica capillary (95 cm length × 50 µm i.d.) (detection length of 10.5 cm from the outlet end of the capillary). The optimized background electrolyte consisted of 400 mM malic acid. C⁴D parameters were set at a fixed amplitude (50 V) and frequency (600 kHz). Under the optimum conditions, the method exhibited good linearity over the range of 1.0⁻100 µg mL−1 (R² ≥ 0.981). The limits of detection based on signal to noise (S/N) ratios of 3 and 10 were ≤0.029 µg mL−1. The method was used for the determination of seawater samples that were spiked with biogenic amines. Good recoveries (77⁻93%) were found.
  7. Yusof Z, Ramasamy S, Mahmood NZ, Yaacob JS
    Molecules, 2018 Jun 04;23(6).
    PMID: 29867000 DOI: 10.3390/molecules23061345
    This project studied the effect of vermicompost application on the composition of bioactive anthocyanin and phenolic compounds, and the antioxidant activity of Clinacanthus nutans. The correlation between the bioactive constituents and antioxidant capacity was also evaluated. In this project, a field study was conducted using a randomized complete block design (RCBD) with four treatment groups, including control plants (CC), plants supplied with chemical fertilizer (CF), plants supplied with vermicompost (VC), and plants supplied with mixed fertilizer (MF). The leaves of C. nutans from all treatment groups were harvested, subjected to solvent extraction, and used for quantification of total anthocyanin content (TAC), total phenolic content (TPC), and total flavonoid content (TFC). The initial antioxidant activity of the extracts was evaluated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, as well as after two and four weeks of storage at -20 °C and 4 °C. Data analysis showed that CC plants contained the highest TAC (2180.14 ± 338.43 µg/g dry weight) and TFC (276.25 ± 3.09 mg QE/g dry weight). On the other hand, CF plants showed the highest TPC (181.53 ± 35.58 mg GAE/g dry weight). Moreover, we found that CC plants had the highest antioxidant potential against DPPH radicals whereas MF plants showed the lowest antioxidant potential. After four weeks of extract storage at -20 °C and 4 °C, the TPC, TFC, TAC, and antioxidant potential of the extracts decreased. Extracts from VC showed the lowest percentage of total phenolic and total flavonoid loss after extract storage at -20 °C and 4 °C compared with other plant extracts. At this juncture, it could be deduced that the application of vermicompost had little effect on the expression of phenolics, flavonoids, or anthocyanin in C. nutans. However, the extract from plants treated with vermicompost (VC and MF) showed better stability compared with CC and CF after extract storage at different temperatures.
  8. Azizi S, Mahdavi Shahri M, Mohamad R
    Molecules, 2017 Jun 08;22(6).
    PMID: 28594362 DOI: 10.3390/molecules22060831
    In the present study, ZnO nanoparticles (NPs) were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II) ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV-visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II) concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II). The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH⁰), free energy change (ΔG⁰), and entropy change (ΔS⁰) were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.
  9. Kwong HC, Mah SH, Chia TS, Quah CK, Lim GK, Kumar CSC
    Molecules, 2017 Jun 17;22(6).
    PMID: 28629119 DOI: 10.3390/molecules22061005
    Adamantyl-based compounds are clinically important for the treatments of type 2 diabetes and for their antiviral abilities, while many more are under development for other pharmaceutical uses. This study focused on the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of adamantyl-based ester derivatives with various substituents on the phenyl ring using Ellman's colorimetric method. Compound 2e with a 2,4-dichloro electron-withdrawing substituent on the phenyl ring exhibited the strongest inhibition effect against AChE, with an IC50 value of 77.15 µM. Overall, the adamantyl-based ester with the mono-substituent at position 3 of the phenyl ring exhibited good AChE inhibition effects with an ascending order for the substituents: Cl < NO₂ < CH₃ < OCH₃. Furthermore, compounds with electron-withdrawing groups (Cl and NO₂) substituted at position 3 on their phenyl rings demonstrated stronger AChE inhibition effects, in comparison to their respective positional isomers. On the other hand, compound 2j with a 3-methoxyphenyl ring showed the highest inhibition effect against BChE, with an IC50 value of 223.30 µM. Molecular docking analyses were conducted for potential AChE and BChE inhibitors, and the results demonstrated that the peripheral anionic sites of target proteins were predominant binding sites for these compounds through hydrogen bonds and halogen interactions instead of hydrophobic interactions in the catalytic active site.
  10. Zainal Abidin SA, Rajadurai P, Hoque Chowdhury ME, Othman I, Naidu R
    Molecules, 2018 06 08;23(6).
    PMID: 29890640 DOI: 10.3390/molecules23061388
    The aim of this study is to investigate the potential anti-cancer activity of l-amino acid oxidase (CP-LAAO) purified from the venom of Cryptelytrops purpureomaculatus on SW480 and SW620 human colon cancer cells. Mass spectrometry guided purification was able to identify and purify CP-LAAO. Amino acid variations identified from the partial protein sequence of CP-LAAO may suggest novel variants of these proteins. The activity of the purified CP-LAAO was confirmed with o-phenyldiamine (OPD)-based spectrophotometric assay. CP-LAAO demonstrated time- and dose-dependent cytotoxic activity and the EC50 value was determined at 13 µg/mL for both SW480 and SW620 cells. Significant increase of caspase-3 activity, reduction of Bcl-2 levels, as well as morphological changes consistent with apoptosis were demonstrated by CP-LAAO. Overall, these data provide evidence on the potential anti-cancer activity of CP-LAAO from the venom of Malaysian C. purpureomaculatus for therapeutic intervention of human colon cancer.
  11. Yeo CI, Ooi KK, Tiekink ERT
    Molecules, 2018 Jun 11;23(6).
    PMID: 29891764 DOI: 10.3390/molecules23061410
    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.
  12. Eko Sukohidayat NH, Zarei M, Baharin BS, Manap MY
    Molecules, 2018 Jul 20;23(7).
    PMID: 30037038 DOI: 10.3390/molecules23071800
    Purification of lipase produced by L. mesenteroides subsp. mesenteroides ATCC 8293 was conducted for the first time using a novel aqueous two-phase system (ATPS) composed of Triton X-100 and maltitol. The partitioning of lipase was optimized according to several parameters including pH, temperature, and crude load. Results showed that lipase preferentially migrated to the Triton X-100 rich phase and optimum lipase partitioning was achieved in ATPS at TLL of 46.4% and crude load of 20% at 30 °C and pH 8, resulting in high lipase purification factor of 17.28 and yield of 94.7%. The purified lipase showed a prominent band on SDS-PAGE with an estimated molecular weight of 50 kDa. The lipase was stable at the temperature range of 30⁻60 °C and pH range of 6⁻11, however, it revealed its optimum activity at the temperature of 37 °C and pH 8. Moreover, lipase exhibited enhanced activity in the presence of non-ionic surfactants with increased activity up to 40%. Furthermore, results exhibited that metals ions such as Na⁺, Mg2+, K⁺ and Ca2+ stimulated lipase activity. This study demonstrated that this novel system could be potentially used as an alternative to traditional ATPS for the purification and recovery of enzymes since the purified lipase still possesses good process characteristics after undergoing the purification process.
  13. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 Jul 25;23(8).
    PMID: 30044450 DOI: 10.3390/molecules23081852
    Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.
  14. Zhao L, Yu M, Sun M, Xue X, Wang T, Cao W, et al.
    Molecules, 2017 Nov 10;22(11).
    PMID: 29125569 DOI: 10.3390/molecules22111935
    A reliable, rapid analytical method was established for the characterization of constituents of the ethanol extract of geopropolis (EEGP) produced by Malaysian stingless bees-Heterotrigona itama-by combining ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). Based on known standards, the online METLIN database, and published literature, 28 compounds were confirmed. Phenolic acids, flavones, triterpenes and phytosterol were identified or tentatively identified using characteristic diagnostic fragment ions. The results indicated that terpenoids were the main components of EEGP, accompanied by low levels of phenolic acids, flavonoids, and phytosterol. Two major components were further purified by preparative high-performance liquid chromatography (PHPLC) and identified by nuclear magnetic resonance (NMR) as 24(E)-cycloart-24-ene-26-ol-3-one and 20-hydroxy-24-dammaren-3-one. These two triterpenes, confirmed in this geopropolis for the first time, are potential chemical markers for the identification of geopropolis from Malaysian stingless bees, H. itama.
  15. Ghasemzadeh A, Baghdadi A, Z E Jaafar H, Swamy MK, Megat Wahab PE
    Molecules, 2018 Jul 26;23(8).
    PMID: 30049990 DOI: 10.3390/molecules23081863
    Recently, the quality-by-design concept has been widely implemented in the optimization of pharmaceutical processes to improve batch-to-batch consistency. As flavonoid compounds in pigmented rice bran may provide natural antioxidants, extraction of flavonoid components from red and brown rice bran was optimized using central composite design (CCD) and response surface methodology (RSM). Among the solvents tested, ethanol was most efficient for extracting flavonoids from rice bran. The examined parameters were temperature, solvent percentage, extraction time, and solvent-to-solid ratio. The highest total flavonoid content (TFC) in red rice bran was predicted as 958.14 mg quercetin equivalents (QE)/100 g dry matter (DM) at 58.5 °C, 71.5% (v/v), 36.2 min, and 7.94 mL/g, respectively, whereas the highest TFC in brown rice bran was predicted as 782.52 mg QE/100 g DM at 56.7 °C, 74.4% (v/v), 36.9 min, and 7.18 mL/g, respectively. Verification experiment results under these optimized conditions showed that the TFC values for red and brown rice bran were 962.38 and 788.21 mg QE/100 g DM, respectively. No significant differences were observed between the predicted and experimental TFC values, indicating that the developed models are accurate. Analysis of the extracts showed that apigenin and p-coumaric acid are abundant in red and brown rice bran. Further, red rice bran with its higher flavonoid content exhibited higher nitric oxide and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (EC50 values of 41.3 and 33.6 μg/mL, respectively) than brown rice bran. In this study, an extraction process for flavonoid compounds from red and brown rice bran was successfully optimized. The accuracy of the developed models indicated that the approach is applicable to larger-scale extraction processes.
  16. Ahmad Hairi H, Jamal JA, Aladdin NA, Husain K, Mohd Sofi NS, Mohamed N, et al.
    Molecules, 2018 Jul 11;23(7).
    PMID: 29997309 DOI: 10.3390/molecules23071686
    Phytoestrogens have attracted considerable attention for their potential in the prevention of postmenopausal osteoporosis. Recently, a phytoestrogen-rich herbal plant, Marantodes pumilum var. alata (Blume) Kuntze was reported to protect against bone loss in ovariectomized rat. However, the bioactive compound responsible for these effects and the underlying mechanism were not known. Through bioassay-guided isolation, demethylbelamcandaquinone B (Dmcq B) was isolated and identified from Marantodes pumilum var. alata leaf extract. In terms of its bone anabolic effects, Dmcq B was at par with 17β-estradiol (E2), in promoting the proliferation, differentiation and mineralization of osteoblast cells. Dmcq-B increased early differentiation markers, collagen content and enzymatic ALP activity. It was demonstrated to regulate BMP2 signaling pathway which further activated the transcription factor, osterix. Subsequently, Dmcq B was able to increase the osteocalcin expression which promoted matrix mineralization as evidenced by the increase in calcium deposition. Dmcq B also reduced the protein level of receptor activator of NF-κβ ligand (RANKL) and promoted osteoprotegerin (OPG) protein expression by osteoblast cells, therefore hastening bone formation rate by decreasing RANKL/OPG ratio. Moreover, Dmcq B was able to increase ER expression, postulating its phytoestrogen property. As the conclusion, Dmcq B is the active compound isolated from Marantodes pumilum var. alata leaves, regulating osteoanabolic activities potentially through the BMP2 and ER signaling pathways.
  17. Saleh MSM, Siddiqui MJ, Mat So'ad SZ, Roheem FO, Saidi-Besbes S, Khatib A
    Molecules, 2018 06 13;23(6).
    PMID: 29899270 DOI: 10.3390/molecules23061434
    Salak fruit (Salacca zalacca), commonly known as snake fruit, is used indigenously as food and for medicinal applications in Southeast Asia. This study was conducted to evaluate the α-glucosidase inhibitory activity of salak fruit extracts in correlation to its Fourier transform infrared spectroscopy (FT-IR) fingerprint, utilizing orthogonal partial least square. This calibration model was applied to develop a rapid analytical method tool for quality control of this fruit. A total of 36 extracts prepared with different solvent ratios of ethanol⁻water (100, 80, 60, 40.20, 0% v/v) and their α-glucosidase inhibitory activities determined. The FT-IR spectra of ethanol⁻water extracts measured in the region of 400 and 4000 cm−1 at a resolution of 4 cm−1. Multivariate analysis with a combination of orthogonal partial least-squares (OPLS) algorithm was used to correlate the bioactivity of the samples with the FT-IR spectral data. The OPLS biplot model identified several functional groups (C⁻H, C=O, C⁻N, N⁻H, C⁻O, and C=C) which actively induced α-glucosidase inhibitory activity.
  18. Ahmad G, Rasool N, Ikram HM, Gul Khan S, Mahmood T, Ayub K, et al.
    Molecules, 2017 Jan 27;22(2).
    PMID: 28134790 DOI: 10.3390/molecules22020190
    The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a-2i, 4a-4i. In brief, Suzuki cross-coupling reaction of 5-bromo-2-methylpyridin-3-amine (1) directly or via N-[5-bromo-2-methylpyridine-3-yl]acetamide (3) with several arylboronic acids produced these novel pyridine derivatives in moderate to good yield. Density functional theory (DFT) studies were carried out for the pyridine derivatives 2a-2i and 4a-4i by using B3LYP/6-31G(d,p) basis with the help of GAUSSIAN 09 suite programme. The frontier molecular orbitals analysis, reactivity indices, molecular electrostatic potential and dipole measurements with the help of DFT methods, described the possible reaction pathways and potential candidates as chiral dopants for liquid crystals. The anti-thrombolytic, biofilm inhibition and haemolytic activities of pyridine derivatives were also investigated. In particular, the compound 4b exhibited the highest percentage lysis value (41.32%) against clot formation in human blood among all newly synthesized compounds. In addition, the compound 4f was found to be the most potent against Escherichia coli with an inhibition value of 91.95%. The rest of the pyridine derivatives displayed moderate biological activities.
  19. Zulazmi NA, Gopalsamy B, Min JC, Farouk AA, Sulaiman MR, Bharatham BH, et al.
    Molecules, 2017 Mar 30;22(4).
    PMID: 28358309 DOI: 10.3390/molecules22040555
    The present study investigates the involvement of the l-arginine-Nitric Oxide-cGMP-K⁺ ATP pathways responsible for the action of anti-allodynic and antihyperalgesic activities of zerumbone in chronic constriction injury (CCI) induced neuropathic pain in mice. The role of l-arginine-NO-cGMP-K⁺ was assessed by the von Frey and the Randall-Selitto tests. Both allodynia and hyperalgesia assessments were carried out on the 14th day post CCI, 30 min after treatments were given for each respective pathway. Anti-allodynic and antihyperalgesic effects of zerumbone (10 mg/kg, i.p) were significantly reversed by the pre-treatment of l-arginine (10 mg/kg), 1H [1,2,4]Oxadiazole[4,3a]quinoxalin-1-one (ODQ), a soluble guanosyl cyclase blocker (2 mg/kg i.p.) and glibenclamide (ATP-sensitive potassium channel blocker) (10 mg/kg i.p.) (p < 0.05). Taken together, these results indicate that systemic administration of zerumbone produces significant anti-allodynic and antihyperalgesic activities in neuropathic pain in mice possibly due to involvement of the l-arginine-NO-cGMP-PKG-K⁺ ATP channel pathways in CCI model.
  20. Abdul-Hamid NA, Mediani A, Maulidiani M, Abas F, Ismail IS, Shaari K, et al.
    Molecules, 2016 Oct 28;21(11).
    PMID: 27801841
    This study was aimed at examining the variations in the metabolite constituents of the different Ajwa grades and farm origins. It is also targeted at establishing the correlations between the metabolite contents and the grades and further to the nitric oxide (NO) inhibitory activity. Identification of the metabolites was generated using ¹H-NMR spectroscopy metabolomics analyses utilizing multivariate methods. The NO inhibitory activity was determined using a Griess assay. Multivariate data analysis, for both supervised and unsupervised approaches, showed clusters among different grades of Ajwa dates obtained from different farms. The compounds that contribute towards the observed separation between Ajwa samples were suggested to be phenolic compounds, ascorbic acid and phenylalanine. Ajwa dates were shown to have different metabolite compositions and exhibited a wide range of NO inhibitory activity. It is also revealed that Ajwa Grade 1 from the al-Aliah farm exhibited more than 90% NO inhibitory activity compared to the other grades and origins. Phenolic compounds were among the compounds that played a role towards the greater capacity of NO inhibitory activity shown by Ajwa Grade 1 from the al-Aliah farm.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links