METHODOLOGY: E. histolytica HM-1:IMSS genomic DNA was isolated and two putative choline/ethanolamine kinase genes (EhCK1 and EhCK2) were cloned and expressed from Escherichia coli BL21 strain. Enzymatic characterizations were further carried out on the purified enzymes.
RESULTS: EhCK1 and EhCK2 were identified from E. histolytica genome. The deduced amino acid sequences were more identical to its homologues in human (35-48%) than other organisms. The proteins were clustered as ethanolamine kinase in the constructed phylogeny tree. Sequence analysis showed that they possessed all the conserved motifs in choline kinase family: ATP-binding loop, Brenner's phosphotransferase motif, and choline kinase motif. Here, the open reading frames were cloned, expressed, and purified to apparent homogeneity. EhCK1 showed activity with choline but not ethanolamine. The biochemical characterization showed that it had a Vmax of 1.9 ± 0.1 µmol/min/mg. Its Km for choline and ATP was 203 ± 26 µM and 3.1 ± 0.4 mM, respectively. In contrast, EhCK2 enzymatic activity was only detected when Mn2+ was used as the co-factor instead of Mg2+ like other choline/ethanolamine kinases. Highly sensitive and specific antibody against EhCK1 was developed and used to confirm the endogenous EhCK1 expression using immunoblotting.
CONCLUSIONS: With the understanding of EhC/EK importance in phospholipid metabolism and their unique characteristic, EhC/EK could be a potential target for future anti-amoebiasis study.
METHODS: Pupae and larvae of black flies were collected from available substrates in the stream from central Thailand. Pupae were individually separated in plastic tubes and maintained until adult flies emerged. The emerged adult flies associated with their pupal exuviae and cocoon as well as mature larvae preserved in 85% ethanol were used to describe the new species based on an integrated approach of morphological examination and molecular analysis of the COI gene.
RESULTS: The new species is characterized in the female by the medium-long sensory vesicle with a medium-sized opening apically, scutum with three faint longitudinal vittae, and the ellipsoidal spermatheca; in the male by the number of upper-eye (large) facets in 20 vertical columns and 21 horizontal rows, hind basitarsus slender, nearly parallel-sided, and median sclerite much wider and upturned apically; in the pupa by the head and thoracic integument densely covered with tiny tubercles, and the pupal gill of arborescent type with 28-30 filaments; and in the larva by the postgenal cleft deep, nearly reaching the posterior margin of the hypostoma, and dark pigmented sheath of the subesophageal ganglion. The DNA barcode successfully differentiated the new species from its congeners with an interspecific genetic divergence of 1.74-18.72%, confirming the morphological identification that the species is a new member of the subgenus Asiosimulium. Phylogenetic analyses also indicated that the new species is genetically closely related to Simulium phurueaense Tangkawanit, Wongpakam & Pramual, 2018, further supporting its morphological classification.
CONCLUSIONS: This is the ninth species assigned to the subgenus Asiosimulium within the genus Simulium Latreille, 1802. Taxonomic notes and identification keys are given to distinguish this new species from the eight known species members in its same subgenus. Additionally, a distribution map of all species members in this subgenus occurring in Thailand and other countries is provided.
RESULTS: A molecular phylogenetic analysis of the mitochondrial ORF and putative control region concurs with a haploweb analysis of nuclear ITS2 sequences in delimiting three species among our dataset: species A and B are found in Madagascar whereas species C occurs in Okinawa, the Philippines and New Caledonia. Comparison of ITS1 sequences from these three species with data available online suggests that species C is also found on the Great Barrier Reef, in Malaysia, in the South China Sea and in Taiwan, and that a distinct species D occurs in the Red Sea. Shallow-water morphs of species A correspond to the morphological description of Stylophora madagascarensis, species B presents the morphology of Stylophora mordax, whereas species C comprises various morphotypes including Stylophora pistillata and Stylophora mordax.
CONCLUSIONS: Genetic analysis of the coral genus Stylophora reveals species boundaries that are not congruent with morphological traits. Of the four hypotheses that may explain such discrepancy (phenotypic plasticity, morphological stasis, morphological convergence, and interspecific hybridization), the first two appear likely to play a role but the fourth one is rejected since mitochondrial and nuclear markers yield congruent species delimitations. The position of the root in our molecular phylogenies suggests that the center of origin of Stylophora is located in the western Indian Ocean, which probably explains why this genus presents a higher biodiversity in the westernmost part of its area of distribution than in the "Coral Triangle".