Nanoscale lipid bilayers, or nanoliposomes, are generally spherical vesicles formed by the dispersion of phospholipid molecules in a water-based medium by energy input. The other nanoscale object discussed in this entry, i.e., tocosome, is a recently introduced bioactive carrier made mainly from tocopheryl phosphates. Due to their bi-compartmental structure, which consists of lipidic and aqueous compartments, these nanocarriers are capable of carrying hydrophilic and hydrophobic material separately or simultaneously. Nanoliposomes and tocosomes are able to provide protection and release of sensitive food-grade bioactive materials in a sustained manner. They are being utilized for the encapsulation of different types of bioactive materials (such as drugs, vaccines, antimicrobials, antioxidants, minerals and preservatives), for the enrichment and fortification of different food and nutraceutical formulations and manufacturing of functional products. However, a number of issues unique to the nutraceutical and food industry must first be resolved before these applications can completely become a reality. Considering the potentials and promises of these colloidal carrier systems, the present article reviews various aspects of nanoliposomes, in comparison with tocosomes, including the ingredients used in their manufacture, formation mechanisms and issues pertaining to their application in the formulation of health promoting dietary supplements and functional food products.
Centella asiatica (C. asiatica) is one of the medicinal plants that has been reported to exert comprehensive neuroprotection in vitro and in vivo. In view of this, the present study was performed to investigate the effect of ethanolic extract of C. asiatica, designated as raw-extract of C. asiatica (RECA) in reducing the acetylcholinesterase (AChE), inflammations, and oxidative stress activities via both in vitro (SH-SY5Y and RAW 264.7 cells) and in vivo (Sprague Dawley rats). Quantitative high-performance liquid chromatography analysis reveals that RECA contains a significantly high proportion of glycosides than the aglycones with madecassoside as the highest component, followed by asiaticoside. Treatment of SH-SY5Y cells with RECA significantly reduced the AChE activity in a concentration-dependent manner with an IC50 value of 31.09 ± 10.07 µg/mL. Furthermore, the anti-inflammatory and antioxidant effects of RECA were evaluated by lipopolysaccharides (LPS)-stimulated RAW 264.7 cells. Our results elucidated that treatment with RECA significantly suppressed the level of pro-inflammatory cytokine/mediators and oxidative stress released in a concentration-dependent manner. Interestingly, these patterns of inhibition were consistent as observed in the LPS-induced neuroinflammation Sprague Dawley rats' model. The highest concentration used in the two models presented the most significant results. Herein, our findings strongly suggest that RECA may offer therapeutic potential for the treatment of Alzheimer's disease through inhibiting the AChE, inflammation, and oxidative stress activities.
Claims of effective therapy against diabetes using plants including Peganum harmala L., Zygophyllum album, Anacyclus valentinus L., Ammodaucus leucotrichus, Lupinus albus, and Marrubium vulgare in Algerian empirical medicine prompted our interest in evaluating their antidiabetic activity by screening their free radical scavenging (DPPH), α-glucosidase, and nitric oxide (NO) inhibitory activities as well as the total phenolic content (TPC). Extracts of the selected plants were prepared using different ratios of ethanol (0, 50, 80, and 100%). In this study, 100%, and 80% ethanol extracts of L. albus were found to be the most potent, in inhibiting α-glucosidase activity with IC50 values of 6.45 and 8.66 μg/mL, respectively. The 100% ethanol extract of A. leucotrichus exhibited the highest free radical scavenging activity with an IC50 value of 26.26 μg/mL. Moreover, the highest TPC of 612.84 μg GAE/mg extract was observed in M. vulgare, extracted with 80% ethanol. Metabolite profiling of the active extract was conducted using 1H-NMR metabolomics. Partial least square analysis (PLS) was used to assess the relationship between the α-glucosidase inhibitory activity of L. albus and the metabolites identified in the extract. Based on the PLS model, isoflavonoids (lupinoisoflavone G, lupisoflavone, lupinoisolone C), amino acids (asparagine and thiamine), and several fatty acids (stearic acid and oleic acid) were identified as metabolites that contributed to the inhibition of α-glucosidase activity. The results of this study have clearly strengthened the traditional claim of the antihyperglycemic effects of L. albus.
In the recent decade, deep eutectic solvents (DESs) have occupied a strategic place in green chemistry research. This paper discusses the application of DESs as functionalization agents for multi-walled carbon nanotubes (CNTs) to produce novel adsorbents for the removal of 2,4-dichlorophenol (2,4-DCP) from aqueous solution. Also, it focuses on the application of the feedforward backpropagation neural network (FBPNN) technique to predict the adsorption capacity of DES-functionalized CNTs. The optimum adsorption conditions that are required for the maximum removal of 2,4-DCP were determined by studying the impact of the operational parameters (i.e., the solution pH, adsorbent dosage, and contact time) on the adsorption capacity of the produced adsorbents. Two kinetic models were applied to describe the adsorption rate and mechanism. Based on the correlation coefficient (R2) value, the adsorption kinetic data were well defined by the pseudo second-order model. The precision and efficiency of the FBPNN model was approved by calculating four statistical indicators, with the smallest value of the mean square error being 5.01 × 10-5. Moreover, further accuracy checking was implemented through the sensitivity study of the experimental parameters. The competence of the model for prediction of 2,4-DCP removal was confirmed with an R2 of 0.99.
Phyllanthin and related lignans were found to be responsible, at least in part, for most of the activity of Phyllanthus species. This observation encouraged the authors to develop methods for the preparation of an extract rich in phyllanthin and related lignans from the aerial parts of P. niruri L. Direct extraction with solvents produced extracts with variable yields and contents of lignans. Lignans were identified by LC-ESI-MS analysis as phyllanthin (used as marker substance), hypophyllanthin, phylltetralin, nirtetralin, and niranthin. Extraction with boiling water produced 18.10 g% (w/w) extract with a trace amount of lignans (phyllanthin content of 0.33 ± 0.10 mg/g extract), while extraction with MeOH gave 3.6 g% w/w extract with a low phyllanthin content (3.1 mg/g extract), as determined by HPLC. However, Soxhlet extraction with hexane, CH2Cl2, or acetone gave extracts with low yields (0.82, 1.12, and 3.40 g% w/w, respectively) and a higher phyllanthin contents (36.2 ± 2.6, 11.7 ± 1.68, and 11.7 ± 1.10 mg/g extract, respectively). Extraction quality and efficiency were optimized by adopting the following three different approaches: (1) Alkaline digestion of the plant material with 30% potassium hydroxide yielded 3.1 g% w/w of purified extract with high phyllanthin content (22.34 ± 0.13 mg/g); (2) microwave-assisted extraction using 80% MeOH gave an extract with a better yield (8.13 g% w/w) and phyllanthin content (21.2 ± 1.30 mg/g) (after filtration through a Diaion HP-20 column); and (3) treatment of the ground plant material at 50 °C with two hydrolytic enzymes, cellulase (9 U/g for 12 h) and then, protease (4 U/g up to 72 h) optimized the yield of extract (13.92 g% w/w) and phyllanthin content (25.9 mg/g extract and total lignans content of 85.87 mg/g extract). In conclusion, the nonconventional methods presented here are superior for optimizing the yield of extract and its lignan contents from the aerial parts of P. niruri.
Gluconasturtiin, a glucosinolate present in watercress, is hydrolysed by myrosinase to form gluconasturtiin-isothiocyanate (GNST-ITC), which has potential chemopreventive effects; however, the underlying mechanisms of action have not been explored, mainly in human cell lines. The purpose of the study is to evaluate the cytotoxicity of GNST-ITC and to further assess its potential to induce apoptosis. GNST-ITC inhibited cell proliferation in both human hepatocarcinoma (HepG2) and human breast adenocarcinoma (MCF-7) cells with IC50 values of 7.83 µM and 5.02 µM, respectively. Morphological changes as a result of GNST-ITC-induced apoptosis showed chromatin condensation, nuclear fragmentation, and membrane blebbing. Additionally, Annexin V assay showed proportion of cells in early and late apoptosis upon exposure to GNST-ITC in a time-dependent manner. To delineate the mechanism of apoptosis, cell cycle arrest and expression of caspases were studied. GNST-ITC induced a time-dependent G2/M phase arrest, with reduction of 82% and 93% in HepG2 and MCF-7 cell lines, respectively. The same treatment also led to the subsequent expression of caspase-3/7 and -9 in both cells demonstrating mitochondrial-associated cell death. Collectively, these results reveal that GNST-ITC can inhibit cell proliferation and can induce cell death in HepG2 and MCF-7 cancer cells via apoptosis, highlighting its potential development as an anticancer agent.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB) remains one of the deadliest, infectious diseases worldwide. The detrimental effects caused by the existing anti-TB drugs to TB patients and the emergence of resistance strains of M. tuberculosis has driven efforts from natural products researchers around the globe in discovering novel anti-TB drugs that are more efficacious and with less side effects. There were eleven main review publications that focused on natural products with anti-TB potentials. However, none of them specifically emphasized antimycobacterial phenolic compounds. Thus, the current review's main objective is to highlight and summarize phenolic compounds found active against mycobacteria from 2000 to 2017. Based on the past studies in the electronic databases, the present review also focuses on several test organisms used in TB researches and their different distinct properties, a few types of in vitro TB bioassay and comparison between their strengths and drawbacks, different methods of extraction, fractionation and isolation, ways of characterizing and identifying isolated compounds and the mechanism of actions of anti-TB phenolic compounds as reported in the literature.
Fresh-cut fruits and vegetables are the main sources of foodborne illness outbreaks with implicated pathogens such as Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes. This study aimed at investigating the influence of two key parameters (concentration of curcumin and illumination time) on the effects of curcumin-based photodynamic sterilization on the preservation of fresh-cut Hami melons. The results indicated that illumination with 50 μmol/L curcumin for 60 min using a blue LED lamp reduced the total aerobic microorganism count by ~1.8 log CFU/g in fresh-cut Hami melons. Besides this, the effects of photodynamic sterilization on the soluble solids content, color, water content, firmness, and sensory indices of the fresh-cut Hami melons were also evaluated. Compared to the control group, photodynamic sterilization can effectively delay the browning rate and maintain the luminosity, firmness, water content, and soluble solids content of fresh-cut Hami melon. The sensory quality was indeed preserved well after 9 days of storage in a fridge. These results showed that photodynamic sterilization is an effective and promising technology to prolong the shelf life of fresh-cut Hami melons.
The present study was conducted to optimize extraction process for defatted pitaya seed extract (DPSE) adopting response surface methodology (RSM). A five-level central composite design was used to optimize total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis (3-ethylbenzothizoline-6-sulfonic acid (ABTS) activities. The independent variables included extraction time (30-60 min), extraction temperature (40-80 °C) and ethanol concentration (60%-80%). Results showed that the quadratic polynomial equations for all models were significant at (p < 0.05), with non-significant lack of fit at p > 0.05 and R2 of more than 0.90. The optimized extraction parameters were established as follows: extraction time of 45 min, extraction temperature of 70 °C and ethanol concentration of 80%. Under these conditions, the recovery of TPC, TFC, and antioxidant activity based on FRAP and ABTS were 128.58 ± 1.61 mg gallic acid equivalent (GAE)/g sample, 9.805 ± 0.69 mg quercetin equivalent (QE)/g sample, 1.23 ± 0.03 mM Fe2+/g sample, and 91.62% ± 0.15, respectively. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) analysis identified seven chemical compounds with flavonoids constituting major composition of the DPSE.
The kinetics of lipid extraction utilizing microwave-assisted extraction (MAE) from Nannochloropsis sp. microalgae were studied using a low cost and green solvent, namely brine (NaCl) solution. The kinetic modelling of the lipid extraction was performed to evaluate the mechanism of the lipid mass transfer using different extraction models, including Fick's Law, First and Second-order Rate Law and the Patricelli mathematical model. The Patricelli mathematical model described the kinetics of lipid extraction well, with the highest average values of determination coefficient (R2 ≥ 0.952) and the lowest average values of mean relative percentage deviation (MRPD ≤ 8.666%). The lipid analysis indicated a positive influence of the microwave temperature and time on the quantity and quality of extracted lipids. SEM analysis of spent microalgae clearly shows an increase in the distorted cell with increase microwave temperature and time, which could be directly correlated to the mechanism of the MAE-brine technique.
A series of new hexasubstituted cyclotriphosphazene compounds (4a-j) consisting of two Schiff base linking units and different terminal substituents was successfully synthesized and characterized. The structures of these compounds were confirmed using Fourier Transform Infra-Red (FTIR), Nuclear Magnetic Resonance (NMR), and CHN elemental analysis. Polarized optical microscopy (POM) was used to determine their liquid-crystal behavior, which was then further confirmed using differential scanning calorimetry (DSC). Compounds 4a-i with heptyl, nonyl, decyl, dodecyl, tetradecyl, hydroxy, 4-carboxyphenyl, chloro, and nitro terminal ends, respectively, showed the liquid-crystal properties, whereas compound 4j with the amino group was found to be non-mesogenic. The attachment of an electron-donating group in 4j eventually give a non-mesogenic product. The study of the fire-retardant properties of these compounds was done using the limiting oxygen index (LOI). In this study, polyester resin (PE) was used as a matrix for moulding, and the LOI value of pure PE was 22.53%. The LOI value increased to 24.71% when PE was incorporated with 1 wt.% of hexachlorocyclotriphosphazene (HCCP), thus indicating that HCCP has a good fire-retardant properties. The result showed that all the compounds have good agreement in their LOI values. Compound 4i with a nitro terminal group gave the highest LOI value of 28.37%.
Clinacanthus nutans is a well-known herb that has been used as an alternative and therapeutic medicine, however more selective C. nutans extracts are needed. In this study, leaves were extracted with 80% methanol and further fractionated with n-hexane, dichloromethane, chloroform, n-butanol, and aqueous residue. Subsequently, the total phenolic content (TPC), total flavonoid content (TFC), antioxidant scavenging activity, and antiproliferative effects on breast cancer (Michigan Cancer Foundation-7 [MCF7]) and normal breast (Michigan Cancer Foundation-10A [MCF 10A]) cells of the extracts were measured. Additionally, molecular docking simulation of the major compounds from C. nutans extracts was conducted. The aqueous residue had the highest TPC and TFC, whereas the crude extract had the highest scavenging activity. Among the extracts, dichloromethane extract (CN-Dcm) was selected as it had the highest selectivity index (SI) (1.48). Then, the chosen extract (CN-Dcm) was proceed for further analysis. The compounds from CN-Dcm were identified using gas chromatography-mass spectrometry (GC-MS). The major compounds from CN-Dcm were further investigated through molecular docking studies. Palmitic acid and linolenyl alcohol were the compounds found in the CN-Dcm extract that exhibited the highest binding affinities with p53-binding protein Mdm-2. These results highlight the potential of C. nutans as a source of anticancer activities.
Extensive use of carbofuran insecticide harms the environment and human health. Carbofuran is an endocrine disruptor and has the highest acute toxicity to humans than all groups of carbamate pesticides used. Carbofuran is highly mobile in soil and soluble in water with a lengthy half-life (50 days). Therefore, it has the potential to contaminate groundwater and nearby water bodies after rainfall events. A bacterial strain BRC05 was isolated from agricultural soil characterized and presumptively identified as Enterobacter sp. The strain was immobilized using gellan gum as an entrapment material. The effect of different heavy metals and the ability of the immobilized cells to degrade carbofuran were compared with their free cell counterparts. The results showed a significant increase in the degradation of carbofuran by immobilized cells compared with freely suspended cells. Carbofuran was completely degraded within 9 h by immobilized cells at 50 mg/L, while it took 12 h for free cells to degrade carbofuran at the same concentration. Besides, the immobilized cells completely degraded carbofuran within 38 h at 100 mg/L. On the other hand, free cells degraded the compound in 68 h. The viability of the freely suspended cell and degradation efficiency was inhibited at a concentration greater than 100 mg/L. Whereas, the immobilized cells almost completely degraded carbofuran at 100 mg/L. At 250 mg/L concentration, the rate of degradation decreased significantly in free cells. The immobilized cells could also be reused for about nine cycles without losing their degradation activity. Hence, the gellan gum-immobilized cells of Enterobacter sp. could be potentially used in the bioremediation of carbofuran in contaminated soil.
Bamboo fibers are utilized for the production of various structures, building materials, etc. and is of great significance all over the world especially in southeast Asia. In this study, the extraction of microcrystalline cellulose (MCC) was performed using bamboo fibers through acid hydrolysis and subsequently different characterizations were carried out using various advanced techniques. Fourier transform infrared (FTIR) spectroscopy analysis has indicated the removal of lignin from MCC extracted from bamboo pulp. Scanning Electron Microscopy (SEM) revealed rough surface and minor agglomeration of the MCC. Pure MCC, albeit with small quantities of impurities and residues, was obtained, as revealed by Energy Dispersive X-ray (EDX) analysis. X-ray diffraction (XRD) indicates the increase in crystallinity from 62.5% to 82.6%. Furthermore, the isolated MCC has slightly higher crystallinity compared to commercial available MCC (74%). The results of thermal gravimetric analysis (TGA) demonstrate better thermal stability of isolated MCC compared to its starting material (Bamboo fibers). Thus, the isolated MCC might be used as a reinforcing element for the production of green composites and it can also be utilized as a starting material for the production of crystalline nanocellulose in future.
Sabah snake grass or Clinacanthus nutans has drawn public interest having significant economic benefits attributable to the presence of phytochemicals and several interesting bioactive constituents that may differ according to harvesting age and harvesting frequency. The current study was aimed to evaluate the effect of harvesting age and harvesting frequency towards herbal yield, antioxidant activities, phytochemicals synthesis, and bioactive compounds of C. nutans. A factorial randomized completely block design with five replications was used to illustrate the relationship between herbal yield, DPPH (2, 2-diphenyl-1-picrylhydrazyl) and ferric reducing antioxidant power (FRAP) assays, total phenolic and flavonoid content affected by harvesting age (week 8, 12, and 16 after transplanting), and harvesting frequency (harvest 1, 2, and 3). The bioactive compounds by HPLC were also determined to describe the interaction effect between both harvesting age and harvesting frequency. The yield, antioxidant activities, and phytochemical contents were gradually increased as the plant grew, with the highest recorded during week 16. However, the synthesis and activities of phytochemicals were reduced in subsequent harvests despite the increment of the herbal yield. All bioactive compounds were found to be influenced insignificantly and significantly by harvesting age and harvesting frequency, respectively, specifically to shaftoside, iso-orientin, and orientin. Among all constituents, shaftoside was the main compound at various harvesting ages and harvesting frequencies. These results indicated that harvesting at week 16 with 1st harvest frequency might enhance the yield while sustaining the high synthesis of polyphenols and antioxidant activities of C. nutans.
Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research aimed at advancing technology. This study reviews the preparation, marriage chemistry and applications of GQDs-nanocellulose composites. The preparation of these composites can be achieved via rapid and simple solution mixing containing known concentration of nanomaterial with a pre-defined composition ratio in a neutral pH medium. They can also be incorporated into other matrices or drop-casted onto substrates, depending on the intended application. Additionally, combining GQDs and nanocellulose has proven to impart new hybrid nanomaterials with excellent performance as well as surface functionality and, therefore, a plethora of applications. Potential applications for GQDs-nanocellulose composites include sensing or, for analytical purposes, injectable 3D printing materials, supercapacitors and light-emitting diodes. This review unlocks windows of research opportunities for GQDs-nanocellulose composites and pave the way for the synthesis and application of more innovative hybrid nanomaterials.
Metabolic syndrome (MetS) is a constellation of risk factors that may lead to a more sinister disease. Raised blood pressure, dyslipidemia in the form of elevated triglycerides and lowered high-density lipoprotein cholesterol, raised fasting glucose, and central obesity are the risk factors that could lead to full-blown diabetes, heart disease, and many others. With increasing sedentary lifestyles, coupled with the current COVID-19 pandemic, the numbers of people affected with MetS will be expected to grow in the coming years. While keeping these factors checked with the polypharmacy available currently, there is no single strategy that can halt or minimize the effect of MetS to patients. This opens the door for a more natural way of controlling the disease. Caffeic acid (CA) is a phytonutrient belonging to the flavonoids that can be found in abundance in plants, fruits, and vegetables. CA possesses a wide range of beneficial properties from antioxidant, immunomodulatory, antimicrobial, neuroprotective, antianxiolytic, antiproliferative, and anti-inflammatory activities. This review discusses the current discovery of the effect of CA against MetS.
We studied the reinforcing effects of treated and untreated nanohydroxyapatite (NHA) on poly-lactic acid (PLA). The NHA surface was treated with three different types of chemicals; 3-aminopropyl triethoxysilane (APTES), sodium n-dodecyl sulfate (SDS) and polyethylenimine (PEI). The nanocomposite samples were prepared using melt mixing techniques by blending 5 wt% untreated NHA and 5 wt% surface-treated NHA (mNHA). Based on the FESEM images, the interfacial adhesion between the mNHA filler and PLA matrix was improved upon surface treatment in the order of mNHA (APTES) > mNHA (SDS) > mNHA (PEI). As a result, the PLA-5wt%mNHA (APTES) nanocomposite showed increased viscoelastic properties such as storage modulus, damping parameter, and creep permanent deformation compared to pure PLA. Similarly, PLA-5wt%mNHA (APTES) thermal properties improved, attaining higher Tc and Tm than pure PLA, reflecting the enhanced nucleating effect of the mNHA (APTES) filler.
The reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride was used as a model to test the catalytic activity of copper(II) complexes containing N,O-chelating Schiff base ligands. In this study, a series of copper(II) complexes containing respective Schiff base ligands, N'-salicylidene-2-aminophenol (1), N'-salicylidene-2-aminothiazole (2), and N,N'-bis(salicylidene)-o-phenylenediamine (3), were synthesized and characterized by elemental analysis, Fourier transform infrared (FT-IR), UV-Visible (UV-Vis) and electron paramagnetic resonance (EPR) spectroscopies. The results from the 4-nitrophenol reduction showed that 3 has the highest catalytic activities with 97.5% conversion, followed by 2 and 1 with 95.2% and 90.8% conversions, respectively. The optimization of the catalyst amount revealed that 1.0 mol% of the catalyst was the most optimized amount with the highest conversion compared to the other doses, 0.5 mol% and 1.5 mol%. Recyclability and reproducibility tests confirmed that all three complexes were active, efficient, and possess excellent reproducibility with consistent catalytic performances and could be used again without a major decrease in the catalytic activity.