Displaying publications 41 - 60 of 62 in total

Abstract:
Sort:
  1. Austin CM, Tan MH, Gan HY, Gan HM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4176-4177.
    PMID: 25630729
    Next-Gen sequencing was used to recover the complete mitochondrial genome of Cherax tenuimanus. The mitogenome consists of 15,797 base pairs (68.14% A + T content) containing 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs, and a 779 bp non-coding AT-rich region. Mitogenomes have now been recovered for all six species of Cherax native to Western Australia.
  2. Gan HM, Tan MH, Lee YP, Austin CM
    PMID: 25329292 DOI: 10.3109/19401736.2014.974174
    The mitogenome of the Australian freshwater blackfish, Gadopsis marmoratus was recovered coverage by genome skimming using the MiSeq sequencer (GenBank Accession Number: NC_024436). The blackfish mitogenome has 16,407 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 819 bp non-coding AT-rich region. This is the 5th mitogenome sequence to be reported for the family Percichthyidae.
  3. Gan HM, Tan MH, Lee YP, Austin CM
    PMID: 25329290 DOI: 10.3109/19401736.2014.974173
    The mitochondrial genome sequence of the Australian tadpole shrimp, Triops australiensis is presented (GenBank Accession Number: NC_024439) and compared with other Triops species. Triops australiensis has a mitochondrial genome of 15,125 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The T. australiensis mitogenome is composed of 36.4% A, 16.1% C, 12.3% G and 35.1% T. The mitogenome gene order conforms to the primitive arrangement for Branchiopod crustaceans, which is also conserved within the Pancrustacean.
  4. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25103431 DOI: 10.3109/19401736.2014.947587
    The mitochondrial genome sequence of the stone crab, Myomenippe fornasinii, second of the superfamily Eriphioidea is documented. Myomenippe fornasinii has a mitogenome of 15,658 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the M. fornasinii mitogenome is 36.10% for T, 18.52% for C, 35.48% for A, and 9.90% for G, with an AT bias of 71.58%. The mitogenome gene order conforms to what is the standard arrangement for brachyuran crabs.
  5. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25103440 DOI: 10.3109/19401736.2014.945554
    The mitochondrial genome sequence of the Morton Bay bug, Thenus orientalis, is documented, which makes it the second mitogenome for species of the family Scyllaridae and the ninth for members of the superfamily Palinuroidae. Thenus orientalis has a mitogenome of 16,826 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 23 transfer RNAs, and a non-coding AT-rich region. The base composition of the T. orientalis mitogenome is 31.31% for T, 23.77% for C, 31.05% for A, and 13.87% for G, with an AT bias of 62.36%. In addition to a duplicated trnS1 and several other tRNA gene rearrangements, the mitogenome gene order has novel protein coding gene order with the nad6 and cob genes translocated as a block to a location downstream of the nad3 gene.
  6. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25090400 DOI: 10.3109/19401736.2014.945553
    The complete mitochondrial genome of the swimming crab Thalamita crenata was obtained from a partial genome scan using the MiSeq sequencing system. The Thalamita crenata mitogenome has 15,787 base pairs (70% A+T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 897 bp non-coding AT-rich region. This Thalamita mitogenome sequence is the first for the genus and the eighth for the family Portunidae.
  7. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25090387 DOI: 10.3109/19401736.2014.945572
    The complete mitochondrial genome of the moon crab Ashtoret lunaris was obtained from a partial genome scan using the MiSeq sequencing system. The Ashtoret lunaris mitogenome is 15,807 base pairs in length (70% A + T content) and made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 956 bp non-coding AT-rich region. This A. lunaris mitogenome sequence is the first for the genus, as well as the family Matutidae and superfamily Calappoidea.
  8. Gan HM, Tan MH, Thai BT, Austin CM
    PMID: 24617474 DOI: 10.3109/19401736.2014.892104
    The complete mitochondrial genome of the commercially important snout otter clam Lutraria rhynchaena was obtained from low-coverage shotgun sequencing data on the MiSeq platform. The L. rhynchaena mitogenome has 16,927 base pairs (69% A + T content) and made up of 12 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 953 bp non-coding AT-rich region. This is the first mitogenome to be sequenced from the genus Lutraria, and the seventh to be reported for the family Mactridae.
  9. Gan HM, Tan MH, Eprilurahman R, Austin CM
    PMID: 24617471 DOI: 10.3109/19401736.2014.892105
    The complete mitochondrial genome of a highland freshwater crayfish, Cherax monticola, was recovered by shotgun sequencing. The mitogenome consists of 15,917 base pairs containing 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of C. monticola is 33.46% for T, 21.48% for C, 33.71% for A and 11.35% for G, with an AT bias of 67.17%.
  10. Wong YM, Juan JC, Gan HM, Austin CM
    Genome Announc, 2014;2(2).
    PMID: 24604639 DOI: 10.1128/genomeA.00077-14
    Clostridium bifermentans strain WYM is an effective biohydrogen producer isolated from landfill leachate sludge. Here, we present the assembly and annotation of its genome, which may provide further insights into the metabolic pathways involved in efficient biohydrogen production.
  11. Wong YM, Juan JC, Gan HM, Austin CM
    Genome Announc, 2014;2(2).
    PMID: 24604637 DOI: 10.1128/genomeA.00064-14
    Clostridium perfringens strain JJC is an effective biohydrogen and biochemical producer that was isolated from landfill leachate sludge. Here, we present the assembly and annotation of its genome, which may provide further insights into the gene interactions involved in efficient biohydrogen production.
  12. Austin CM, Tan MH, Croft LJ, Gan HM
    Mitochondrial DNA, 2016;27(1):126-7.
    PMID: 24438281 DOI: 10.3109/19401736.2013.878907
    The complete mitochondrial genome of Cherax cainii was recovered from partial genome sequencing data using the HiSeq platform. The mitogenome consists of 15,801 base pairs (69% A + T content) containing 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a 783 bp non-coding AT-rich region. This is the second completely sequenced mitogenome from the genus Cherax after the first reported Cherax destructor mitogenome nearly a decade ago.
  13. Austin CM, Tan MH, Croft LJ, Gan HM
    Mitochondrial DNA, 2016;27(1):220-1.
    PMID: 24484586 DOI: 10.3109/19401736.2014.880897
    The complete mitochondrial genome of Cherax glaber was sequenced using the HiSeq platform. The mitogenome consists of 15,806 base pairs containing 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The Cherax glaber has a base composition of 32.39% for T, 22.42% for C, 33.73% for A and 11.46% for G, with an AT bias of 66.12%.
  14. Harrisson K, Pavlova A, Gan HM, Lee YP, Austin CM, Sunnucks P
    Heredity (Edinb), 2016 Jun;116(6):506-15.
    PMID: 26883183 DOI: 10.1038/hdy.2016.8
    Climatic differences across a taxon's range may be associated with specific bioenergetic demands and may result in genetics-based metabolic adaptation, particularly in aquatic ectothermic organisms that rely on heat exchange with the environment to regulate key physiological processes. Extending down the east coast of Australia, the Great Dividing Range (GDR) has a strong influence on climate and the evolutionary history of freshwater fish species. Despite the GDR acting as a strong contemporary barrier to fish movement, many species, and species with shared ancestries, are found on both sides of the GDR, indicative of historical dispersal events. We sequenced complete mitogenomes from the four extant species of the freshwater cod genus Maccullochella, two of which occur on the semi-arid, inland side of the GDR, and two on the mesic coastal side. We constructed a dated phylogeny and explored the relative influences of purifying and positive selection in the evolution of mitogenome divergence among species. Results supported mid- to late-Pleistocene divergence of Maccullochella across the GDR (220-710 thousand years ago), bringing forward previously reported dates. Against a background of pervasive purifying selection, we detected potentially functionally relevant fixed amino acid differences across the GDR. Although many amino acid differences between inland and coastal species may have become fixed under relaxed purifying selection in coastal environments rather than positive selection, there was evidence of episodic positive selection acting on specific codons in the Mary River coastal lineage, which has consistently experienced the warmest and least extreme climate in the genus.
  15. Gan HM, Grandjean F, Jenkins TL, Austin CM
    BMC Genomics, 2019 May 03;20(1):335.
    PMID: 31053062 DOI: 10.1186/s12864-019-5704-3
    BACKGROUND: The recently published complete mitogenome of the European lobster (Homarus gammarus) that was generated using long-range PCR exhibits unusual gene composition (missing nad2) and gene rearrangements among decapod crustaceans with strong implications in crustacean phylogenetics. Such atypical mitochondrial features will benefit greatly from validation with emerging long read sequencing technologies such as Oxford Nanopore that can more accurately identify structural variation.

    RESULTS: We re-sequenced the H. gammarus mitogenome on an Oxford Nanopore Minion flowcell and performed a long-read only assembly, generating a complete mitogenome assembly for H. gammarus. In contrast to previous reporting, we found an intact mitochondrial nad2 gene in the H. gammarus mitogenome and showed that its gene organization is broadly similar to that of the American lobster (H. americanus) except for the presence of a large tandemly duplicated region with evidence of pseudogenization in one of each duplicated protein-coding genes.

    CONCLUSIONS: Using the European lobster as an example, we demonstrate the value of Oxford Nanopore long read technology in resolving problematic mitogenome assemblies. The increasing accessibility of Oxford Nanopore technology will make it an attractive and useful tool for evolutionary biologists to verify new and existing unusual mitochondrial gene rearrangements recovered using first and second generation sequencing technologies, particularly those used to make phylogenetic inferences of evolutionary scenarios.

  16. Austin CM, Croft LJ, Grandjean F, Gan HM
    Front Genet, 2021;12:695763.
    PMID: 35126445 DOI: 10.3389/fgene.2021.695763
    Cherax destructor, the yabby, is an iconic Australian freshwater crayfish species, which, similar to other major invertebrate groups, is grossly under-represented in genomic databases. The yabby is also the principal commercial freshwater crustacean species in Australia subject to explotation via inland fisheries and aquaculture. To address the genomics knowledge gap for this species and explore cost effective and efficient methods for genome assembly, we generated 106.8 gb of Nanopore reads and performed a long-read only assembly of the Cherax destructor genome. On a mini-server configured with an ultra-fast swap space, the de novo assembly took 131 h (∼5.5 days). Genome polishing with 126.3 gb of PCR-Free Illumina reads generated an assembled genome size of 3.3 gb (74.6% BUSCO completeness) with a contig N50 of 80,900 bp, making it the most contiguous for freshwater crayfish genome assemblies. We found an unusually large number of cellulase genes within the yabby genome which is relevant to understanding the nutritional biology, commercial feed development, and ecological role of this species and crayfish more generally. These resources will be useful for genomic research on freshwater crayfish and our methods for rapid and super-efficient genome assembly will have wide application.
  17. Gan HM, Tan MH, Austin CM
    PMID: 24938115 DOI: 10.3109/19401736.2014.926490
    The mitochondrial genome sequence of the Australian crayfish, Euastacus yarraensis, is documented and compared with other Australian crayfish genera. Euastacus yarraensis has a mitogenome of 15,548 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The base composition of E. yarraensis mitogenome is 32.39% for T, 22.45% for C, 34.43% for A, and 10.73% for G, with an AT bias of 66.82%. The mitogenome gene order conforms to what is considered the primitive arrangement for parastacid crayfish.
  18. Gan HM, Tan MH, Austin CM
    PMID: 24617485 DOI: 10.3109/19401736.2014.895997
    The commercial freshwater crayfish Cherax quadricarinatus complete mitochondrial genome was recovered from partial genome sequencing using the MiSeq Personal Sequencer. The mitogenome has 15,869 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The base composition of C. quadricarinatus is 32.16% for T, 23.39% for C, 33.26% for A, and 11.19% for G, with an AT bias of 65.42%.
  19. Gan HM, Tan MH, Austin CM
    PMID: 24617484 DOI: 10.3109/19401736.2014.895996
    The complete mitochondrial genome of the conservationally significant Macquarie perch (Macquaria australasica) was obtained from low-coverage shotgun sequencing using the MiSeq sequencer. The M. australasica mitogenome has 16,496 base pairs (55% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 819 bp non-coding AT-rich region. This is the first mitogenome sequence for the genus Macquaria, and the third to be reported for the family Percichthyidae.
  20. Gan HM, Schultz MB, Austin CM
    BMC Evol. Biol., 2014;14:19.
    PMID: 24484414 DOI: 10.1186/1471-2148-14-19
    Although it is possible to recover the complete mitogenome directly from shotgun sequencing data, currently reported methods and pipelines are still relatively time consuming and costly. Using a sample of the Australian freshwater crayfish Engaeus lengana, we demonstrate that it is possible to achieve three-day turnaround time (four hours hands-on time) from tissue sample to NCBI-ready submission file through the integration of MiSeq sequencing platform, Nextera sample preparation protocol, MITObim assembly algorithm and MITOS annotation pipeline.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links