RetCam is an excellent screening tool for the detection of retinopathy of prematurity (ROP). However, affordability is a barrier when adopting the use of RetCam in developing countries. We aimed to describe different stages of ROP using ultrasonographic B-scan and to evaluate the association between funduscopic examinations and ultrasonographic B-scan findings in premature neonates with ROP in Malaysia. A descriptive cross sectional study was conducted in 90 eyes of 47 premature neonates with different stages of ROP in three tertiary hospitals in Malaysia. Experienced ophthalmologists performed detailed funduscopic examinations using binocular indirect ophthalmoscopy (BIO). A masked examiner performed a 10 MHz ultrasonographic B-scan evaluation with 12 meridian position images within 48 hours of clinical diagnosis. Data from the clinical examination and ultrasonographic findings were collected and analysed. We recruited 37 eyes (41.1%) with stage 1 ROP, 29 eyes (32.3%) with stage 2, 18 eyes (20.0%) with stage 3, and 3 eyes (3.3%) with stages 4 and 5 based on the clinical assessment. Ultrasonography correctly identified 3 (8.1%) stage 1 eyes, 17 (58.6%) stage 2 eyes, 13 (72.2%) stage 3 eyes, and 3 each (100%) of the stage 4 and 5 eyes. There was a significant association between the funduscopic signs and the ultrasound findings for stage 2 ROP and above (Fisher's exact test, p <0.001). In conclusion, all stages of ROP were detected and described with a 10 MHz ultrasonic B-scan system. A significant association was observed between funduscopic signs and ultrasonographic findings in premature Malaysian neonates with stage 2 ROP and above.
A new antimalarial sterol, kaimanol (1), along with a known sterol, saringosterol (2) was isolated from the Indonesian Marine sponge, Xestospongia sp. The chemical structure of the new compound was determined on the basis of spectroscopic evidences and by comparison to those related compounds previously reported. Isolated compounds, 1 and 2 were evaluated for their antiplasmodial effect against Plasmodium falciparum 3D7 strains. Compounds 1 and 2 exhibited antiplasmodial activity with IC50 values of 359 and 0.250 nM, respectively.
Two undescribed sesquiterpenoids, namely dysoticans A and B, and three undescribed sesquiterpenoid dimers, namely dysoticans C-E, together with six analogs, were isolated from the stem bark of Dysoxylum parasiticum (Osbeck) Kosterm. (Meliaceae), growing in West Java, Indonesia. Their structures were elucidated based on extensive spectroscopic analysis and theoretical simulations of ECD spectra and 13C NMR shifts. Dysoticans A and B possessed undescribed cadinanes with minor modifications, while C and D featured unprecedented pseudo-sesquiterpenoid dimers through O-ether linkages of cadinanes and guaianes, respectively. Dysotican E was also characterized as the true-sesquiterpenoid dimer featuring eudesmane-germacrene hybrid framework from the Meliaceae family. Furthermore, A-C and E showed moderate activities against the human breast cancer MCF-7 and cervical cancer HeLa cell lines with IC50 values ranging from 22.15 to 45.14 μM. D selectively exhibited significant cytotoxicity against the HeLa cell line with an IC50 value of 13.00 ± 0.13 μM.
Chisocarpene A (1) is a new tirucallane-type triterpenoid together with odoratone (2) and 24-methylenecycloartanol (3), isolated from the stem bark of Chisocheton lasiocarpus. The chemical structures of compounds 1-3 were elucidated through a detailed analysis of their spectroscopic data (IR, MS, 1 D, and 2 D NMR). The isolated compounds were evaluated for cytotoxic activity against the MCF-7 breast cancer cell line using a resazurin-based assay. Compound 1 showed the most potent activity (IC50 26.56 ± 1.01 µM) and was two-fold more active than the positive control.
New phenylisoxazole quinoxalin-2-amine hybrids 5a-i were successfully synthesised with yields of 53-85% and characterised with various spectroscopy methods. The synthesised hybrids underwent in vitro α-amylase and α-glucosidase inhibitory assays, with acarbose as the positive control. Through the biological study, compound 5h exhibits the highest α-amylase inhibitory activity with IC50 = 16.4 ± 0.1 μM while compounds 5a-c, 5e and 5h exhibit great potential as α-glucosidase inhibitors, with 5c being the most potent (IC50 = 15.2 ± 0.3 μM). Among the compounds, 5h exhibits potential as a dual inhibitor for both α-amylase (IC50 = 16.4 ± 0.1 μM) and α-glucosidase (IC50 = 31.6 ± 0.4 μM) enzymes. Through the molecular docking studies, the inhibition potential of the selected compounds is supported. Compound 5h showed important interactions with α-amylase enzyme active sites and exhibited the highest binding energy of -8.9 ± 0.10 kcal mol-1, while compound 5c exhibited the highest binding energy of -9.0 ± 0.20 kcal mol-1 by forming important interactions with the α-glucosidase enzyme active sites. The molecular dynamics study showed that the selected compounds exhibited relative stability when binding with α-amylase and α-glucosidase enzymes. Additionally, compound 5h demonstrated a similar pattern of motion and mechanism of action as the commercially available miglitol.
Phytochemical investigation on the bark of E. kingiana plant afforded ten compounds, including six polyketides namely kingianin A 1, kingianin B 2, kingianin E 3, kingianin F 4, kingianin K 5 and kingianin L 6, three endiandric acids; kingianic acid A 7, tsangibeilin B 8 and endiandric acid M 9, and one sesquiterpene; daibuoxide 10. All compounds were separated as racemic mixture by recycling high-performance liquid chromatography (RHPLC), except for daibuoxide. Their structures were elucidated by detailed spectroscopic and comparative literature data analysis. This is the first report on the presence of the sesquiterpene; daibuoxide in Endiandra genus. In vitro enzymatic bio-evaluation of the isolated compounds against α-amylase and α-glucosidase showed that 4 demonstrated the best α-amylase and α-glucosidase inhibitory activity with IC50 values of 181.54 ± 6.27 µg/mL and 237.87 ± 0.07 µg/mL, respectively. In addition, molecular docking analysis confirmed the α-amylase and α-glucosidase inhibitory activities demonstrated by 4.