MATERIALS AND METHODS: Tincture of the roots was concentrated to dryness by evaporating the ethanol in vacuo. This ethanolic extract was partitioned into 5 fractions sequentially with hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The corpus cavernosum relaxant activity of each fraction was investigated. The DCM fraction which showed the highest potency in relaxing phenylephrine-precontracted corpora cavernosa was purified by column chromatography. The effects of the most potent DCM subfraction in relaxing phenylephrine-precontracted corpora cavernosa, DCM-I, on angiotensin I- or angiotensin II-induced contractions in corpora cavernosa were investigated. The effects of DCM-I pretreatment on the responses of phenylephrine-precontracted corpora cavernosa to angiotensin II or bradykinin were also studied. An in vitro assay was conducted to evaluate the effect of DCM-I on angiotensin-converting enzyme activity.
RESULTS: Fraction DCM-I decreased the maximal contractions (100%) evoked by angiotensin I and angiotensin II to 30 ± 14% and 26 ± 16% (p < 0.001), respectively. In phenylephrine-precontracted corpora cavernosa, DCM-I pretreatment caused angiotensin II to induce 82 ± 27% relaxation of maximal contraction (p < 0.01) and enhanced (p < 0.001) bradykinin-induced relaxations from 47 ± 8% to 100 ± 5%. In vitro, DCM-I was able to reduce (p < 0.001) the maximal angiotensin-converting enzyme activity to 78 ± 0.24%.
CONCLUSION: Fraction DCM-I was able to antagonize angiotensin II-induced contraction to cause corpus cavernosum relaxation via inhibition of angiotensin II type 1 receptor and enhance bradykinin-induced relaxation through inhibition of angiotensin-converting enzyme.
METHODOLOGY: We used RNA-Sequencing (RNA-Seq) to describe the differential expression of genes in SFO, SON, PVN, NTS and RVLM of rats being chronically fed with high-salt (HS) diet. Subsequently, a selection of putatively regulated genes was validated with quantitative reverse transcription polymerase chain reaction (qRT-PCR) in both Spontaneously Hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats.
RESULTS: The findings enabled us to identify number of differentially expressed genes in SFO, SON, PVN, NTS and RVLM; that are either up-regulated in both strains of rats (SON- Caprin2, Sctr), down-regulated in both strains of rats (PVN- Orc, Gkap1), up-regulated only in SHRs (SFO- Apopt1, Lin52, AVP, OXT; SON- AVP, OXT; PVN- Caprin2, Sclt; RVLM- A4galt, Slc29a4, Cmc1) or down-regulated only in SHRs (SON- Ndufaf2, Kcnv1; PVN- Pi4k2a; NTS- Snrpd2l, Ankrd29, St6galnac6, Rnf157, Iglon5, Csrnp3, Rprd1a; RVLM- Ttr, Faim).
CONCLUSIONS: These findings demonstrated the adverse effects of HS diet on BP, which may be mediated via modulating the signaling systems in CV centers in the hypothalamic forebrain and brainstem.