Displaying publications 41 - 57 of 57 in total

Abstract:
Sort:
  1. Ma J, Ma NL, Fei S, Liu G, Wang Y, Su Y, et al.
    Environ Pollut, 2024 Apr 01;346:123646.
    PMID: 38402938 DOI: 10.1016/j.envpol.2024.123646
    Stover and manure are the main solid waste in agricultural industry. The generation of stover and manure could lead to serious environmental pollution if not handled properly. Composting is the potential greener solution to remediate and reduce agricultural solid waste, through which stover and manure could be remediated and converted into organic fertilizer, but the long composting period and low efficiency of humic substance production are the key constraints in such remediation approach. In this study, we explore the effect of lignocellulose selective removal on composting by performing chemical pretreatment on agricultural waste followed by utilization of biochar to assist in the remediation by co-composting treatment and reveal the impacts of different lignocellulose component on organic fertilizer production. Aiming to discover the key factors that influence humification during composting process and improve the composting quality as well as comprehensive utilization of agricultural solid waste. The results demonstrated that the removal of selective lignin or hemicellulose led to the shift of abundances lignocellulose-degrading bacteria, which in turn accelerated the degradation of lignocellulose by almost 51.2%. The process also facilitated the remediation of organic waste via humification and increased the humic acid level and HA/FA ratio in just 22 days. The richness of media relies on their lignocellulose content, which is negatively correlated with total nitrogen content, humic acid (HA) content, germination index (GI), and pH, but positively correlated with fulvic acid (FA) and total organic carbon (TOC). The work provides a potential cost effective and efficient framework for agricultural solid waste remediation and reduction.
  2. Zhu C, Li Y, Liu G, Abdullah AL, Jiang Q
    PeerJ, 2024;12:e16743.
    PMID: 38188162 DOI: 10.7717/peerj.16743
    Nanoplastics (NPs) are an abundant, long-lasting, and widespread type of environmental pollution that is of increasing concern because of the serious threats they might pose to ecosystems and species. Identifying the ecological effects of plastic pollution requires understanding the effects of NPs on aquatic organisms. Here, we used the Pacific white shrimp (Litopenaeus vannamei) as a model species to investigate whether ingestion of polystyrene NPs affects gut microbes and leads to metabolic changes in L. vannamei. The abundance of Proteobacteria increased and that of Bacteroidota decreased after NPs treatment. Specifically, Vibrio spp., photobacterium spp., Xanthomarina spp., and Acinetobacter spp. increased in abundance, whereas Sulfitobacter spp. and Pseudoalteromonas spp. decreased. Histological observations showed that L. vannamei exposed to NP displayed a significantly lower intestinal fold height and damaged intestinal structures compared with the control group. Exposure to NPs also stimulated alkaline phosphatase, lysozyme, and acid phosphatase activity, resulting in an immune response in L. vannamei. In addition, the content of triglycerides, total cholesterol, and glucose were significantly altered after NP exposure. These results provided significant ecotoxicological data that can be used to better understand the biological fate and effects of NPs in L. vannamei.
  3. Li ZZ, Liu G, Tao R, Lobont OR
    Front Public Health, 2021;9:699821.
    PMID: 34568255 DOI: 10.3389/fpubh.2021.699821
    This paper aims to determine the existence of convergence in health expenditures among Association for South East Asian Nations (ASEAN) countries. Based on the SPSM procedure and panel KSS unit root test results, the public health expenditures (PUHE) in Indonesia, Lao PDR, Cambodia, the Philippines, and Myanmar are converging, while that of Brunei Darussalam, Malaysia, Vietnam, Singapore, and Thailand are diverging. In addition, the sequences of private health expenditures (PRHE) in ASEAN member states are stationary, which implies convergence. This finding is in accordance with Wagner's law, that is, as nations develop, they are forced to expand public expenditure. Specifically, countries with low levels of PUHE tend to catch up with the high health spending countries. This research has policy implications with regard to the convergence of health expenditure across countries. The government in low- and lower-middle income countries should raise PUHE to provide access to health services for those who are unaffordable individuals.
  4. Jaafar MH, Xu P, Mageswaran UM, Balasubramaniam SD, Solayappan M, Woon JJ, et al.
    J Anim Sci Technol, 2024 Jan;66(1):178-203.
    PMID: 38618031 DOI: 10.5187/jast.2023.e93
    Constipation, which refers to difficulties in defecation and infrequent bowel movement in emptying the gastrointestinal system that ultimately produces hardened fecal matters, is a health concern in livestock and aging animals. The present study aimed to evaluate the potential effects of dairy-isolated lactic acid bacteria (LAB) strains to alleviate constipation as an alternative therapeutic intervention for constipation treatment in the aging model. Rats were aged via daily subcutaneous injection of D-galactose (600 mg/body weight [kg]), prior to induction of constipation via oral administration of loperamide hydrochloride (5 mg/body weight [kg]). LAB strains (L. fermentum USM 4189 or L. plantarum USM 4187) were administered daily via oral gavage (1 × 10 Log CFU/day) while the control group received sterile saline. Aged rats as shown with shorter telomere lengths exhibited increased fecal bulk and soften fecal upon administration of LAB strains amid constipation as observed using the Bristol Stool Chart, accompanied by a higher fecal moisture content as compared to the control (p < 0.05). Fecal water-soluble metabolite profiles showed a reduced concentration of threonine upon administration of LAB strains compared to the control (p < 0.05). Histopathological analysis also showed that the administration of LAB strains contributed to a higher colonic goblet cell count as compared to the control (p < 0.05). The present study illustrates the potential of dairy-sourced LAB strains as probiotics to ameliorate the adverse effect of constipation amid aging, and as a potential dietary intervention strategy for dairy foods including yogurt and cheese.
  5. Dhanjal DS, Sharma P, Mehta M, Tambuwala MM, Prasher P, Paudel KR, et al.
    Future Med Chem, 2022 Feb;14(4):271-288.
    PMID: 35019757 DOI: 10.4155/fmc-2021-0081
    Chronic respiratory disorders affect millions of people worldwide. Pathophysiological changes to the normal airway wall structure, including changes in the composition and organization of its cellular and molecular constituents, are referred to as airway remodeling. The inadequacy of effective treatment strategies and scarcity of novel therapies available for the treatment and management of chronic respiratory diseases have given rise to a serious impediment in the clinical management of such diseases. The progress made in advanced drug delivery, has offered additional advantages to fight against the emerging complications of airway remodeling. This review aims to address the gaps in current knowledge about airway remodeling, the relationships between remodeling, inflammation, clinical phenotypes and the significance of using novel drug delivery methods.
  6. Lin X, Lee SY, Ni J, Zhang X, Hu X, Zou P, et al.
    Int J Mol Sci, 2023 Oct 13;24(20).
    PMID: 37894819 DOI: 10.3390/ijms242015138
    Bougainvillea is popular in ornamental horticulture for its colorful bracts and excellent adaptability, but the complex genetic relationship among this genus is fuzzy due to limited genomic data. To reveal more genomic resources of Bougainvillea, we sequenced and assembled the complete chloroplast (cp) genome sequences of Bougainvillea spectabilis 'Splendens'. The cp genome size was 154,869 bp in length, containing 86 protein-coding genes, 38 tRNAs, and eight rRNAs. Cp genome comparison across 12 Bougainvillea species (B. spectabilis, B. glabra, B. peruviana, B. arborea, B. praecox, B. stipitata, B. campanulata, B. berberidifolia, B. infesta, B. modesta, B. spinosa, and B. pachyphylla) revealed five mutational hotspots. Phylogenetic analysis suggested that B. spectabilis published previously and B. glabra clustered into one subclade as two distinct groups, sister to the subclade of B. spectabilis 'Splendens'. We considered the phylogeny relationships between B. spectabilis and B. glabra to be controversial. Based on two hypervariable regions and three common plastid regions, we developed five molecular markers for species identification in Bougainvillea and applied them to classify 53 ornamental Bougainvillea cultivars. This study provides a valuable genetic resource for Bougainvillea breeding and offers effective molecular markers to distinguish the representative ornamental species of Bougainvillea.
  7. Liang J, Abdullah ALB, Wang H, Liu G, Han M
    Aquat Toxicol, 2023 Oct;263:106711.
    PMID: 37783050 DOI: 10.1016/j.aquatox.2023.106711
    The COVID-19 pandemic has further intensified plastic pollution due to the escalated use of single-use gloves and masks, consequently leading to the widespread presence of microplastics (MPs) and nanoplastics (NPs) in major rivers and lakes worldwide. Macrobrachium rosenbergii has become an important experimental subject due to its ecological role and environmental sensitivity. In this study, we sought to comprehend the ramifications of NPs on the widely-distributed freshwater prawn, M rosenbergii, by conducting a detailed analysis of its responses to NPs after both 96 h and 30 days of exposure. The transcriptome analysis revealed 918 differentially expressed unigenes (DEGs) after 30 days of NPs exposure (356 upregulated, 562 downregulated) and 2376 DEGs after 96 h of NPs exposure (1541 upregulated, 835 downregulated). The results of DEGs expression indicated that acute NPs exposure enhanced carbohydrate transport and metabolism, fostering chitin and extracellular matrix processes. In contrast, chronic NPs exposure induced nucleolar stress in M. rosenbergii, impeding ribosome development and mRNA maturation while showing no significant changes in glucose metabolism. Our findings underscore the M. rosenbergii distinct coping mechanisms during acute and chronic NPs exposure, elucidating its vital adaptive strategies. These results contribute to our understanding of the ecological implications of NPs pollution and its impact on aquatic animals.
  8. Nisaa AA, Oon CE, Sreenivasan S, Balakrishnan V, Tan JJ, Teh CS, et al.
    Food Sci Biotechnol, 2023 Mar;32(4):471-480.
    PMID: 36911325 DOI: 10.1007/s10068-022-01088-x
    The aim of this study was to investigate the different immunological and antimicrobial properties of breast milk from women with (W) or without (WO) vaginal yeast infections during pregnancy in 85 lactating women (W, n = 43; WO, n = 42). Concentrations of IL-10, IgA, IgM, IgG, EGF, and TGF-α were similar in both groups. However, breast milk of women aged below 31 years old from the W-group showed higher concentration of EGF than the WO-group (p = 0.031). Breast milk from WO-group exhibited higher anti-Candida properties than W-group, both via growth inhibition and aggregation of yeast cells (p 
  9. Ren T, Chen N, Wan Mahari WA, Xu C, Feng H, Ji X, et al.
    Environ Res, 2021 01;192:110273.
    PMID: 33002505 DOI: 10.1016/j.envres.2020.110273
    Pot experiments were conducted to investigate the influence of biochar addition and the mechanisms that alleviate Cd stress in the growth of tobacco plant. Cadmium showed an inhibitory effect on tobacco growth at different post-transplantation times, and this increased with the increase in soil Cd concentration. The growth index decreased by more than 10%, and the photosynthetic pigment and photosynthetic characteristics of the tobacco leaf were significantly reduced, and the antioxidant enzyme activity was enhanced. Application of biochar effectively alleviated the inhibitory effect of Cd on tobacco growth, and the alleviation effect of treatments is more significant to the plants with a higher Cd concentration. The contents of chlorophyll a, chlorophyll b, and carotenoids in the leaves of tobacco plants treated with biochar increased by 9.99%, 12.58%, and 10.32%, respectively, after 60 days of transplantation. The photosynthetic characteristics index of the net photosynthetic rate increased by 11.48%, stomatal conductance increased by 11.44%, and intercellular carbon dioxide concentration decreased to 0.92. Based on the treatments, during the growth period, the antioxidant enzyme activities of tobacco leaves comprising catalase, peroxidase, superoxide dismutase, and malondialdehyde increased by 7.62%, 10.41%, 10.58%, and 12.57%, respectively, after the application of biochar. Our results show that biochar containing functional groups can effectively reduce the effect of Cd stress by intensifying the adsorption or passivation of Cd in the soil, thereby, significantly reducing the Cd content in plant leaves, and providing a theoretical basis and method to alleviate soil Cd pollution and effect soil remediation.
  10. De Rubis G, Paudel KR, Liu G, Agarwal V, MacLoughlin R, de Jesus Andreoli Pinto T, et al.
    Toxicol In Vitro, 2023 Oct;92:105660.
    PMID: 37591407 DOI: 10.1016/j.tiv.2023.105660
    Airway remodelling occurs in chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disease (COPD). It is characterized by aberrant activation of epithelial reparation, excessive extracellular matrix (ECM) deposition, epithelial-to-mesenchymal transition (EMT), and airway obstruction. The master regulator is Transforming Growth Factor-β (TGF-β), which activates tissue repair, release of growth factors, EMT, increased cell proliferation, and reduced nitric oxide (NO) secretion. Due to its fundamental role in remodelling, TGF-β is an emerging target in the treatment of CRDs. Berberine is a benzylisoquinoline alkaloid with antioxidant, anti-inflammatory, and anti-fibrotic activities whose clinical application is hampered by poor permeability. To overcome these limitations, in this study, berberine was encapsulated in monoolein-based liquid crystalline nanoparticles (BM-LCNs). The potential of BM-LCNs in inhibiting TGF-β-induced remodelling features in human bronchial epithelial cells (BEAS-2B) was tested. BM-LCNs significantly inhibited TGF-β-induced migration, reducing the levels of proteins upregulated by TGF-β including endoglin, thrombospondin-1, basic fibroblast growth factor, vascular-endothelial growth factor, and myeloperoxidase, and increasing the levels of cystatin C, a protein whose expression was downregulated by TGF-β. Furthermore, BM-LCNs restored baseline NO levels downregulated by TGF-β. The results prove the in vitro therapeutic efficacy of BM-LCNs in counteracting TGF-β-induced remodelling features. This study supports the suitability of berberine-loaded drug delivery systems to counteract airway remodelling, with potential application as a treatment strategy against CRDs.
  11. Solanki N, Mehta M, Chellappan DK, Gupta G, Hansbro NG, Tambuwala MM, et al.
    Future Med Chem, 2020 11;12(22):2019-2034.
    PMID: 33124483 DOI: 10.4155/fmc-2020-0083
    Aim: In the present study boswellic acids-loaded chitosan nanoparticles were synthesized using ionic gelation technique. The influence of independent variables were studied and optimized on dependent variables using central composite design. Methodology & results: The designed nanoparticles were observed spherical in shape with an average size of 67.5-187.2 nm and have also shown an excellent entrapment efficiency (80.06 ± 0.48). The cytotoxicity assay revealed enhanced cytotoxicity for drug-loaded nanoparticles in contrast to the free drug having an IC50 value of 17.29 and 29.59 μM, respectively. Flow cytometry confirmed that treatment of cells with 40 μg/ml had arrested 22.75 ± 0.3% at SubG0 phase of the cell cycle when compared with untreated A459 cells. The observed results justified the boswellic acids-loaded chitosan nanoparticles were effective due to greater cellular uptake, sustained intercellular drug retention and enhanced antiproliferative effect by inducing apoptosis.
  12. Xie Y, Gong L, Liu S, Yan J, Zhao S, Xia C, et al.
    Environ Res, 2023 Nov 01;236(Pt 1):116680.
    PMID: 37500036 DOI: 10.1016/j.envres.2023.116680
    Microbial degradation of pesticide residues has the potential to reduce their hazards to human and environmental health. However, in some cases, degradation can activate pesticides, making them more toxic to microbes. Here we report on the β-cypermethrin (β-CY) toxicity to Bacillus cereus GW-01, a recently described β-CY degrader, and effects of antioxidants on β-CY degradation. GW-01 exposed to β-CY negatively affected the growth rate. The highest maximum specific growth rate (μm) appeared at 25 mg/L β-CY. β-CY induced the oxidative stress in GW-01. The activities of superoxide dismutase (SOD), catalyse (CAT), and glutathione-S-transferase (GST) were significantly higher than that in control (p 
  13. Li X, Gao D, Paudel YN, Li X, Zheng M, Liu G, et al.
    ACS Chem Neurosci, 2022 Feb 02;13(3):330-339.
    PMID: 35044760 DOI: 10.1021/acschemneuro.1c00656
    Parkinson's disease (PD) is a devastating disease of the central nervous system that occurs mainly in the elderly age group, affecting their quality of life. The PD pathogenesis is not yet fully understood and lacks the disease-modifying treatment strategies. Sanghuangprous vaninii (S. vaninii) is a perennial fungus with a plethora of pharmacological activities including anti-cancer and antioxidant activity and so on. However, no study till date has reported its neuroprotective effect against symptoms that are similar to PD in pre-clinical investigation. In the current study, we investigated anti-PD-like effects of S. vaninii mycelium extracts (SvMEs) on MPTP-induced PD in zebrafish. We observed that the loss of dopaminergic neurons and neurovascular reduction were reversed by using SvMEs in the zebrafish brain in a concentration-independent manner. Moreover, it also relieved locomotor impairments in MPTP-induced PD zebrafish. In addition, SvMEs exerted significant antioxidant activity in vitro, which was also demonstrated in vivo on ktr4:NTR-hKikGR zebrafish. Upon investigating the underlying mechanism, we found that SvMEs may alleviate oxidant stress and accelerate α-synuclein degradation and then alleviate PD-like symptoms. Antioxidant-related genes (sod1, gss, gpx4a, gclm, and cat) implied that the SvMEs exhibited anti-PD activity due to the antioxidation mechanism. Finally, upon analysis of chemical composition of SvMEs by liquid chromatography-mass spectrometry, we identified 10 compounds that are plausibly responsible for the anti-PD-like effect of SvMEs. On the limiting part, the finding of the study would have been more robust had we investigated the protein expression of genes related to PD and oxidative stress and compared the effects of SvMEs with any standard anti-PD therapy. Despite this, our results indicated that SvMEs possess anti-PD effects, indicating SvMEs as a potential candidate that is worth exploring further in this avenue.
  14. Liu G, Tiang MF, Ma S, Wei Z, Liang X, Sajab MS, et al.
    PeerJ, 2024;12:e16995.
    PMID: 38426145 DOI: 10.7717/peerj.16995
    BACKGROUND: Hermetia illucens (HI), commonly known as the black soldier fly, has been recognized for its prowess in resource utilization and environmental protection because of its ability to transform organic waste into animal feed for livestock, poultry, and aquaculture. However, the potential of the black soldier fly's high protein content for more than cheap feedstock is still largely unexplored.

    METHODS: This study innovatively explores the potential of H. illucens larvae (HIL) protein as a peptone substitute for microbial culture media. Four commercial proteases (alkaline protease, trypsin, trypsase, and papain) were explored to hydrolyze the defatted HIL, and the experimental conditions were optimized via response surface methodology experimental design. The hydrolysate of the defatted HIL was subsequently vacuum freeze-dried and deployed as a growth medium for three bacterial strains (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) to determine the growth kinetics between the HIL peptone and commercial peptone.

    RESULTS: The optimal conditions were 1.70% w/w complex enzyme (alkaline protease: trypsin at 1:1 ratio) at pH 7.0 and 54 °C for a duration of 4 h. Under these conditions, the hydrolysis of defatted HIL yielded 19.25% ±0.49%. A growth kinetic analysis showed no significant difference in growth parameters (μmax, Xmax, and λ) between the HIL peptone and commercial peptone, demonstrating that the HIL hydrolysate could serve as an effective, low-cost alternative to commercial peptone. This study introduces an innovative approach to HIL protein resource utilization, broadening its application beyond its current use in animal feed.

  15. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Eur Phys J C Part Fields, 2023;83(10):933.
    PMID: 37855556 DOI: 10.1140/epjc/s10052-023-11952-7
    A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at s=13TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138fb-1. The 95% confidence level upper limit set on the branching fraction of the 125GeV Higgs boson to invisible particles, B(H→inv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous B(H→inv) searches carried out at s=7, 8, and 13TeV in complementary production modes. The combined upper limit at 95% confidence level on B(H→inv) is 0.15 (0.08 expected).
  16. Haw TJ, Starkey MR, Nair PM, Pavlidis S, Liu G, Nguyen DH, et al.
    Mucosal Immunol, 2016 Jul;9(4):859-72.
    PMID: 26555706 DOI: 10.1038/mi.2015.111
    Chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory respiratory disorder, often induced by cigarette smoke (CS) exposure. The development of effective therapies is impaired by a lack of understanding of the underlining mechanisms. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. We interrogated a mouse model of CS-induced experimental COPD and human tissues to identify a novel role for TRAIL in COPD pathogenesis. CS exposure of wild-type mice increased TRAIL and its receptor messenger RNA (mRNA) expression and protein levels, as well as the number of TRAIL(+)CD11b(+) monocytes in the lung. TRAIL and its receptor mRNA were also increased in human COPD. CS-exposed TRAIL-deficient mice had decreased pulmonary inflammation, pro-inflammatory mediators, emphysema-like alveolar enlargement, and improved lung function. TRAIL-deficient mice also developed spontaneous small airway changes with increased epithelial cell thickness and collagen deposition, independent of CS exposure. Importantly, therapeutic neutralization of TRAIL, after the establishment of early-stage experimental COPD, reduced pulmonary inflammation, emphysema-like alveolar enlargement, and small airway changes. These data provide further evidence for TRAIL being a pivotal inflammatory factor in respiratory diseases, and the first preclinical evidence to suggest that therapeutic agents that target TRAIL may be effective in COPD therapy.
  17. Zhu Y, Hu Z, Lv X, Huang R, Gu X, Zhang C, et al.
    Transbound Emerg Dis, 2022 Jul;69(4):1782-1793.
    PMID: 33993639 DOI: 10.1111/tbed.14155
    Since 2010, several duck Tembusu viruses (DTMUVs) have been isolated from infected ducks in China, and these virus strains have undergone extensive variation over the years. Although the infection rate is high, the mortality rate is usually relatively low-~5%-30%; however, since fall 2019, an infectious disease similar to DTMUV infection but with a high mortality rate of ~50% in goslings has been prevalent in Anhui Province, China. The present study identified a new Tembusu virus, designated DTMUV/Goose/China/2019/AQ-19 (AQ-19), that is believed to be responsible for the noticeably high mortality in goslings. To investigate the genetic variation of this strain, its entire genome was sequenced and analysed for specific variations, and goslings and mice were challenged with the isolated virus to investigate its pathogenicity. The AQ-19 genome shared only 94.3%-96.9% and 90.9% nucleotide identity with other Chinese and Malaysian DTMUVs, respectively; however, AQ-19 has high homology with Thailand DTMUVs (97.2%-98.1% nucleotide identity). Phylogenetic analysis of the E gene revealed that AQ-19 and most of Thailand DTMUVs form a branch separate from any of the previously reported DTMUV strains in China. After the challenge, some goslings and mice showed typical clinical signs of DTMUV, particularly severe neurological dysfunction. AQ-19 has high virulence in goslings and mice, resulting in 60% and 70% mortality through intramuscular and intracerebral routes, respectively. Pathological examination revealed severe histological lesions in the brain and liver of the infected goslings and mice. Taken together, these results demonstrated the emergence of a novel Tembusu virus with high virulence circulating in goslings in China for the first time, and our findings highlight the high genetic diversity of DTMUVs in China. Further study of the pathogenicity and host range of this novel Tembusu virus is particularly important.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links