Displaying publications 41 - 49 of 49 in total

Abstract:
Sort:
  1. Menon V, Sharma S, Gupta S, Ghosal A, Nadda AK, Jose R, et al.
    Chemosphere, 2023 Mar;317:137848.
    PMID: 36642147 DOI: 10.1016/j.chemosphere.2023.137848
    Synthetic plastics, which are lightweight, durable, elastic, mouldable, cheap, and hydrophobic, were originally invented for human convenience. However, their non-biodegradability and continuous accumulation at an alarming rate as well as subsequent conversion into micro/nano plastic scale structures via mechanical and physio-chemical degradation pose significant threats to living beings, organisms, and the environment. Various minuscule forms of plastics detected in water, soil, and air are making their passage into living cells. High temperature and ambient humidity increase the degradation potential of plastic polymers photo-catalytically under sunlight or UV-B radiations. Microplastics (MPs) of polyethylene terephthalate, polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been detected in bottled water. These microplastics are entering into the food chain cycle, causing serious harm to all living organisms. MPs entering into the food chain are usually inert in nature, possessing different sizes and shapes. Once they enter a cell or tissue, it causes mechanical damage, induces inflammation, disturbs metabolism, and even lead to necrosis. Various generation routes, types, impacts, identification, and treatment of microplastics entering the water bodies and getting associated with various pollutants are discussed in this review. It emphasizes potential detection techniques like pyrolysis, gas chromatography-mass spectrometry (GC-MS), micro-Raman spectroscopy, and fourier transform infrared spectroscopy (FT IR) spectroscopy for microplastics from water samples.
  2. Khan FB, Singh P, Jamous YF, Ali SA, Abdullah, Uddin S, et al.
    Cancers (Basel), 2022 Dec 30;15(1).
    PMID: 36612248 DOI: 10.3390/cancers15010249
    Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.
  3. Arulkumaran S, Gibb DM, Chua S, Singh P, Ratnam SS
    Br J Obstet Gynaecol, 1989 Oct;96(10):1203-6.
    PMID: 2590656
    Uterine activity in spontaneous normal labour was studied in Singaporean Malay women at term with a singleton vertex presentation. Nulliparae had significantly higher uterine activity compared with their multiparous counterparts. Uterine activity in the Malay population was compared with that of a similar Chinese population. When controlled for parity, maternal height and birthweight of babies, there was no difference in uterine activity between the two groups.
  4. Singh P, Pandey P, Arya DK, Anjum MM, Poonguzhali S, Kumar A, et al.
    Biomed Mater, 2023 Mar 27;18(3).
    PMID: 36921352 DOI: 10.1088/1748-605X/acc4a1
    The morbidity rate following a surgical procedure increasing rapidly in the cases associated with surgical site infections. Traditional sutures lack the ability to deliver drugs as the incorporation of the drug in their structure would hamper their mechanical properties. To prevent such infections, we developed an extracellular matrix mimicking electrospun nanofibrous yarns of poly-(D,L)-lactic acid and polyvinyl alcohol loaded with vancomycin and ferulic acid, prepared by uniaxial electrospinning technique.In-vitrocharacterization such as scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, tensile strength testing, degradation studies, and antimicrobial studies along within-vivoevaluation done with help of incision wound healing rat model and simultaneous testing of microbial load in the incised tissue. Thein-vitrostudies indicated the nanofiber yarns have size range 200-300 nm with a tensile strength of 7.54 ± 0.58 MPa. The dual drug-loaded yarn showed sustained drug release over a period of 48 h.In-vitrowater uptake and biodegradation data indicated optimum results suitable for suturing applications. Antimicrobial study showed excellent antimicrobial activity against bothS. aureus and E. coli.Results obtained fromin-vivostudy suggested excellent wound healing potential of nanofiber yarns as compared with commercial silk sutures. The histopathological studies confirmed restoring ability of nanofiber yarn to the normal skin structure. Enzyme-linked immunosorbent assay (ELISA) study revealed the downregulation of inflammatory markers i.e. TNF-alpha and IL-6, making nanofibers sutures suitable for surgical wound healing applications. Overall, the present study may conclude that the developed dual drug-loaded nanofiber yarns have excellent potential in surgical wound healing applications.
  5. G Singh P, S Jain A, B Sridhara Setty P, Bv S, S Patil S, P A, et al.
    Bioinformation, 2022;18(8):683-691.
    PMID: 37323557 DOI: 10.6026/97320630018683
    There is a shred of evidence to suggest that Emblica officinalis Gaertn, the botanical name for amla seeds, has greater medicinal potential than amla fruit. We conducted this work to assess the anti-inflammatory, antibacterial, and antioxidant capacities of E. officinalis seed extracts. The bioactive components from the seeds were fractionated using chloroform, hexane, methanol, and diethyl ether, according to the polarity of the solvents. The total amount of phenolic and flavonoid was estimated. Both the reducing power and antioxidant capacities of the extracts were evaluated using the DPPH (1,1-diphenyl-2-picryl-hydrazyl) technique. 15-lipoxygenase (LOX) was inhibited by seed extracts at doses ranging from 5 to 25 micrograms. In silico docking was employed to assess the results. Some human pathogenic microorganisms were tested for their antibacterial activity using the agar disc diffusion method. Escherichia coli, Proteus vulgaris, and Klebsiella pneumonia were inhibited by a methanolic extract with an IC50 value of 58g, making it the most common organic solvent extract. Methanolic extracts also showed good antioxidant and antibacterial activity. Our investigation led us to discover that amla seeds have anti-inflammatory, antioxidant, and antibacterial effects.
  6. Sharma T, Xia C, Sharma A, Raizada P, Singh P, Sharma S, et al.
    Bioengineered, 2022 Apr;13(4):10518-10539.
    PMID: 35443858 DOI: 10.1080/21655979.2022.2062526
    Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.
  7. Okely T, Reilly JJ, Tremblay MS, Kariippanon KE, Draper CE, El Hamdouchi A, et al.
    BMJ Open, 2021 10 25;11(10):e049267.
    PMID: 34697112 DOI: 10.1136/bmjopen-2021-049267
    INTRODUCTION: 24-hour movement behaviours (physical activity, sedentary behaviour and sleep) during the early years are associated with health and developmental outcomes, prompting the WHO to develop Global guidelines for physical activity, sedentary behaviour and sleep for children under 5 years of age. Prevalence data on 24-hour movement behaviours is lacking, particularly in low-income and middle-income countries (LMICs). This paper describes the development of the SUNRISE International Study of Movement Behaviours in the Early Years protocol, designed to address this gap.

    METHODS AND ANALYSIS: SUNRISE is the first international cross-sectional study that aims to determine the proportion of 3- and 4-year-old children who meet the WHO Global guidelines. The study will assess if proportions differ by gender, urban/rural location and/or socioeconomic status. Executive function, motor skills and adiposity will be assessed and potential correlates of 24-hour movement behaviours examined. Pilot research from 24 countries (14 LMICs) informed the study design and protocol. Data are collected locally by research staff from partnering institutions who are trained throughout the research process. Piloting of all measures to determine protocol acceptability and feasibility was interrupted by COVID-19 but is nearing completion. At the time of publication 41 countries are participating in the SUNRISE study.

    ETHICS AND DISSEMINATION: The SUNRISE protocol has received ethics approved from the University of Wollongong, Australia, and in each country by the applicable ethics committees. Approval is also sought from any relevant government departments or organisations. The results will inform global efforts to prevent childhood obesity and ensure young children reach their health and developmental potential. Findings on the correlates of movement behaviours can guide future interventions to improve the movement behaviours in culturally specific ways. Study findings will be disseminated via publications, conference presentations and may contribute to the development of local guidelines and public health interventions.

  8. Lin HP, Taib NM, Singh P, Sinniah D, Lam KL
    Aust Paediatr J, 1984 Mar;20(1):53-6.
    PMID: 6590027
    From 1967-82, 9 children with testicular relapse (TR) of acute lymphoblastic leukaemia (ALL) were diagnosed out of 99 boys treated, an incidence of 9.1%. The median time from the onset of ALL until diagnosis was 28 months (range 3-41 months). All were asymptomatic; six were detected on routine examination while three were diagnosed only on biopsy. Routine biopsy prior to stopping chemotherapy is useful in detecting occult TR. Biopsies should be done on both the testes regardless of the clinical findings. The age, leucocyte count and hepatosplenomegaly at diagnosis of ALL were not found to be significant factors in influencing relapse. Eight children were in bone marrow remission at the time of TR, but three had preceding or concurrent meningeal leukaemia while in the other five the testis was the first and only site of relapse. Radiotherapy was effective in local disease control but failed to prevent bone marrow relapse in all except two patients despite continuation of chemotherapy. The median time from onset of TR until bone marrow relapse was 7 months (range 3-13 months) and the median time until death, was 11 months (range 6-18 months). The frequency of testicular relapse may be related to the intensity of either the initial induction therapy or the consolidation chemotherapy. Further studies are required to determine whether the incidence of testicular relapse will decline with more intensive early treatment.
  9. Singh P, Lau CSS, Siah SY, Chua KO, Ting ASY
    Arch Microbiol, 2024 Mar 22;206(4):188.
    PMID: 38519709 DOI: 10.1007/s00203-024-03895-8
    Biodegradation is an eco-friendly measure to address plastic pollution. This study screened four bacterial isolates that were capable of degrading recalcitrant polymers, i.e., low-density polyethylene, polyethylene terephthalate, and polystyrene. The unique bacterial isolates were obtained from plastic polluted environment. Dermacoccus sp. MR5 (accession no. OP592184) and Corynebacterium sp. MR10 (accession no. OP536169) from Malaysian mangroves and Bacillus sp. BS5 (accession no. OP536168) and Priestia sp. TL1 (accession no. OP536170) from a sanitary landfill. The four isolates showed a gradual increase in the microbial count and the production of laccase and esterase enzymes after 4 weeks of incubation with the polymers (independent experiment set). Bacillus sp. BS5 produced the highest laccase 15.35 ± 0.19 U/mL and showed the highest weight loss i.e., 4.84 ± 0.6% for PS. Fourier transform infrared spectroscopy analysis confirmed the formation of carbonyl and hydroxyl groups as a result of oxidation reactions by enzymes. Liquid chromatography-mass spectrometry analysis showed the oxidation of the polymers to small molecules (alcohol, ethers, and acids) assimilated by the microbes during the degradation. Field emission scanning electron microscopy showed bacterial colonization, biofilm formation, and surface erosion on the polymer surface. The result provided significant insight into enzyme activities and the potential of isolates to target more than one type of polymer for degradation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links