Displaying publications 41 - 60 of 140 in total

Abstract:
Sort:
  1. Fung SY, Tan NH, Liew SH, Sim SM, Aguiyi JC
    Trop Biomed, 2009 Apr;26(1):80-4.
    PMID: 19696731
    Seed of Mucuna pruriens (Velvet beans) has been prescribed by traditional medicine practitioners in Nigeria as a prophylactic oral antisnake remedy. In the present studies, we investigated the protective effects of M. pruriens seed extract (MPE) against histopathological changes induced by intravenous injection of Naja sputatrix (Malayan cobra) venom in rats pretreated with the seed extract. Examination by light microscope revealed that the venom induced histopathological changes in heart and blood vessels in liver, but no effect on brain, lung, kidney and spleen. The induced changes were prevented by pretreatment of the rats with MPE. Our results suggest that MPE pretreatment protects rat heart and liver blood vessels against cobra venom-induced damages.
  2. Faisal T, Tan KY, Sim SM, Quraishi N, Tan NH, Tan CH
    J Proteomics, 2018 07 15;183:1-13.
    PMID: 29729992 DOI: 10.1016/j.jprot.2018.05.003
    The venom proteome of wild Pakistani Russell's viper (Daboia russelii) was investigated through nano-ESI-LCMS/MS of the reverse-phase HPLC fractions. A total of 54 venom proteins were identified and clustered into 11 protein families. Phospholipase A2 (PLA2, 63.8%) and Kunitz-type serine protease inhibitor (KSPI, 16.0%) were most abundant, followed by snake venom serine protease (SVSP, 5.5%, mainly Factor V activating enzyme), vascular endothelial growth factor (VEGF, 4.3%), snake venom metalloproteinase (SVMP, 2.5%, mainly Factor X activating enzyme) and phosphodiesterase (PDE, 2.5%). Other minor proteins include cysteine-rich secretory protein (CRiSP), snake venom C-type lectin/lectin-like protein (snaclec), nerve growth factor, L-amino acid oxidase and 5'-nucleotidase. PLA2, KSPI, SVSP, snaclec and SVMP are hemotoxic proteins in the venom. The study indicated substantial venom variation in D. russelii venoms of different locales, including 3 Pakistani specimens kept in the USA. The venom exhibited potent procoagulant activity on human plasma (minimum clotting dose = 14.5 ng/ml) and high lethality (rodent LD50 = 0.19 μg/g) but lacked hemorrhagic effect locally. The Indian VINS Polyvalent Antivenom bound the venom immunologically in a concentration-dependent manner. It moderately neutralized the venom procoagulant and lethal effects (normalized potency against lethality = 2.7 mg venom neutralized per g antivenom).

    BIOLOGICAL SIGNIFICANCE: Comprehensive venom proteomes of D. russelii from different locales will facilitate better understanding of the geographical variability of the venom in both qualitative and quantitative terms. This is essential to provide scientific basis for the interpretation of differences in the clinical presentation of Russell's viper envenomation. The study revealed a unique venom proteome of the Pakistani D. russelii from the wild (Indus Delta), in which PLA2 predominated (~60% of total venom proteins). The finding unveiled remarkable differences in the venom compositions between the wild (present study) and the captive specimens reported previously. The integration of toxicity tests enabled the correlation of the venom proteome with the envenoming pathophysiology, where the venom showed potent lethality mediated through coagulopathic activity. The Indian VINS Polyvalent Antivenom (VPAV) showed binding activity toward the venom protein antigens; however the immunorecognition of small proteins and PLA2-dominating fractions was low to moderate. Consistently, the antivenom neutralized the toxicity of the wild Pakistani Russell's viper venom at moderate efficacies. Our results suggest that it may be possible to enhance the Indian antivenom potency against the Pakistani viper venom by the inclusion of venoms from a wider geographical range including that from Pakistan into the immunogen formulation.

  3. Oh AMF, Tan CH, Ariaranee GC, Quraishi N, Tan NH
    J Proteomics, 2017 07 05;164:1-18.
    PMID: 28476572 DOI: 10.1016/j.jprot.2017.04.018
    The Indian krait (Bungarus caeruleus) is one of the "Big Four" venomous snakes widely distributed in South Asia. The present venomic study reveals that its venom (Sri Lankan origin) is predominated by phospholipases A2 (64.5% of total proteins), in which at least 4.6% are presynaptically-acting β-bungarotoxin A-chains. Three-finger toxins (19.0%) are the second most abundant, comprising 15.6% κ-neurotoxins, the potent postsynaptically-acting long neurotoxins. Comparative chromatography showed that venom samples from Sri Lanka, India and Pakistan did not exhibit significant variation. These venoms exhibited high immunoreactivity toward VINS Indian Polyvalent Antivenom (VPAV). The Pakistani krait venom, however, had a relatively lower degree of binding, consistent with its moderate neutralization by VPAV (potency=0.3mg venom neutralized per ml antivenom) while the Sri Lankan and Indian venoms were more effectively neutralized (potency of 0.44 mg/ml and 0.48 mg/ml, respectively). Importantly, VPAV was able to neutralize the Sri Lankan and Indian venoms to a comparable extent, supporting its use in Sri Lanka especially in the current situation where Sri Lanka-specific antivenom is unavailable against this species. The findings also indicate that the Pakistani B. caeruleus venom is immunologically less comparable and should be incorporated in the production of a pan-regional, polyspecific antivenom.

    BIOLOGICAL SIGNIFICANCE: The Indian krait or blue krait, Bungarus caeruleus, is a highly venomous snake that contributes to the snakebite envenoming problem in South Asia. This is a less aggressive snake species but its accidental bite can cause rapid and severe neurotoxicity, in which the patient may succumb to paralysis, respiratory failure and death within a short frame of time. The proteomic analysis of its venom (sourced from Sri Lanka) unveils its content that well correlates to its envenoming pathophysiology, driven primarily by the abundant presynaptic and postsynaptic neurotoxins (β-bungarotoxins and κ-neurotoxins, respectively). The absence of cytotoxins in the venom proteome also correlates with the lack of local envenoming sign (pain, swelling), and explains why the bite may be insidious until later stage when paralysis sets in. The muscarinic toxin-like proteins in the venom may be the cause of severe abdominal pain that precedes paralysis in many cases, and justifies the need of closely monitoring this symptom in suspected cases. Venom samples from Sri Lanka, India and Pakistan exhibited no remarkable variation in protein profiling and reacted immunologically toward the VINS Indian Polyvalent Antivenom, though to a varying extent. The antivenom is effective in neutralizing the Sri Lankan and Indian venoms, confirming its clinical use in the countries. The antivenom efficacy against the Pakistani venom, however, may be further optimized by incorporating the Pakistani venom in the antivenom production.

  4. Fung SY, Cheong PCH, Tan NH, Ng ST, Tan CS
    Int J Med Mushrooms, 2018;20(5):459-469.
    PMID: 29953361 DOI: 10.1615/IntJMedMushrooms.2018026252
    A cultivar of fruiting bodies of Ophiocordyceps sinensis (FBOS; OCS02) was analyzed for nutrients, bioactive compounds, and heavy metal content to showcase its potential as a competitive, sustainable, and safe alternative to wild types and other cultivars. A previous 28-day subacute toxicity study showed that doses up to 1 g · kg-1 did not cause any adverse effects in Sprague-Dawley rats. The OCS02 cultivar contained large amounts of cordycepin, polysaccharides, and essential and semi-essential amino acids (0.66, 482.80, 99.02, and 101.04 g · kg-1, respectively) compared with levels reported in wild types and in cultivated mycelia. β-1,3/1,6-glucan content was considerably high at 342.50 g · kg-1. The potassium level (5.14 g kg-1) tied in well with the low sodium content (0.121 g · kg-1)-6 times lower than amounts in wild types. We found no detectable levels of heavy metals such as lead, arsenic, cadmium, and mercury. The major amino acids found in FBOS (0CS02 cultivar) were arginine, lysine, serine, and threonine at 45.20, 20.30, 18.60, and 18.20 g · kg-1, respectively. The cultivated FBOS (OCS02 cultivar) is a comparable alternative to wild-type and other cultivated strains of O. sinensis. It has potential as a nutraceutical to meet market demand.
  5. Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY
    PeerJ, 2018;6:e4940.
    PMID: 29888137 DOI: 10.7717/peerj.4940
    Background: The highly valued medicinal tiger milk mushroom (also known as Lignosus rhinocerus) has the ability to cure numerous ailments. Its anticancer activities are well explored, and recently a partially purified cytotoxic protein fraction termed F5 from the mushroom's sclerotial cold water extract consisting mainly of fungal serine proteases was found to exhibit potent selective cytotoxicity against a human breast adenocarcinoma cell line (MCF7) with IC50 value of 3.00 μg/ml. However, characterization of its cell death-inducing activity has yet to be established.

    Methods: The mechanism involved in the cytotoxic activities of F5 against MCF7 cells was elucidated by flow cytometry-based apoptosis detection, caspases activity measurement, and expression profiling of apoptosis markers by western blotting. Molecular attributes of F5 were further mined from L. rhinocerus's published genome and transcriptome for future exploration.

    Results and Discussion: Apoptosis induction in MCF7 cells by F5 may involve a cross-talk between the extrinsic and intrinsic apoptotic pathways with upregulation of caspase-8 and -9 activities and a marked decrease of Bcl-2. On the other hand, the levels of pro-apoptotic Bax, BID, and cleaved BID were increased accompanied by observable actin cleavage. At gene level, F5 composed of three predicted non-synonymous single nucleotide polymorphisms (T > C) and an alternative 5' splice site.

    Conclusions: Findings from this study provide an advanced framework for further investigations on cancer therapeutics development from L. rhinocerus.

  6. Tan KY, Liew JL, Tan NH, Quah ESH, Ismail AK, Tan CH
    J Proteomics, 2019 02 10;192:246-257.
    PMID: 30243938 DOI: 10.1016/j.jprot.2018.09.006
    The Asiatic coral snakes are basal in the phylogeny of coral snakes. Although envenoming by the Asiatic coral snakes is rarely fatal, little is known about their venom properties and variability from the American coral snakes. Integrating reverse-phase high performance liquid chromatography and nano-liquid chromatography-tandem mass spectrometry, we showed that the venom proteome of the Malaysian banded or striped coral snake (Calliophis intestinalis) was composed of mainly phospholipases A2 (PLA2, 43.4%) and three-finger toxins (3FTx, 20.1%). Within 3FTx, the cytotoxins or cardiotoxins (CTX) dominated while the neurotoxins' content was much lower. Its subproteomic details contrasted with the 3FTx profile of most Micrurus sp., illustrating a unique dichotomy of venom phenotype between the Old and the New World coral snakes. Calliophis intestinalis venom proteome was correlated with measured enzymatic activities, and in vivo it was myotoxic but non-lethal to mice, frogs and geckos at high doses (5-10 μg/g). The venom contains species-specific toxins with distinct sequences and antigenicity, and the antibodies raised against PLA2 and CTX of other elapids showed poor binding toward its venom antigens. The unique venom proteome of C. intestinalis unveiled a repertoire of novel toxins, and the toxicity test supported the need for post-bite monitoring of myotoxic complication. SIGNIFICANCE: Malaysian banded or striped coral snake (Calliophis intestinalis) has a cytotoxin (CTX)-predominating venom proteome, a characteristic shared by its congener, the Malayan blue coral snake (Calliophis bivirgata). With little neurotoxins (NTX), it illustrates a CTX/NTX dichotomy of venom phenotype between the Old World and the New World coral snakes. The low toxicity of the venom imply that C. intestinalis bite envenoming can be managed via symptomatic relief of the mild to moderate pain with appropriate analgesia. Systemically, the serum creatine kinase level of patients should be monitored serially for potential complication of myotoxicity. The distinct antigenicity of the venom proteins implies that the empirical use of heterologous antivenom is mostly inappropriate and not recommended.
  7. Oh AMF, Tan CH, Tan KY, Quraishi NH, Tan NH
    J Proteomics, 2019 02 20;193:243-254.
    PMID: 30385415 DOI: 10.1016/j.jprot.2018.10.016
    The proteome of the Pakistani B. sindanus venom was investigated with reverse-phase HPLC and nano-ESI-LCMS/MS analysis. At least 36 distinct proteins belonging to 8 toxin protein families were identified. Three-finger toxin (3FTx), phospholipase A2 (including β-bungarotoxin A-chains) and Kunitz-type serine protease inhibitor (KSPI) were the most abundant, constituting ~95% of total venom proteins. The other toxin proteins of low abundance are snake venom metalloproteinase (SVMP), L-amino acid oxidase (LAAO), acetylcholinesterase (AChE), vespryn and cysteine-rich secretory protein (CRiSP). The venom was highly lethal to mice with LD50 values of 0.04 μg/g (intravenous) and 0.15 μg/g (subcutaneous). The 3FTx proteins are diverse, comprising kappa-neurotoxins, neurotoxin-like protein, non-conventional toxins and muscarinic toxin-like proteins. Kappa-neurotoxins and β-bungarotoxins represent the major toxins that mediate neurotoxicity in B. sindanus envenoming. Alpha-bungarotoxin, commonly present in the Southeast Asian krait venoms, was undetected. The Indian VINS Polyvalent Antivenom (VPAV) was immunoreactive toward the venom, and it moderately cross-neutralized the venom lethality (potency = 0.25 mg/ml). VPAV was able to reverse the neurotoxicity and prevent death in experimentally envenomed mice, but the recovery time was long. The unique toxin composition of B. sindanus venom may be considered in the formulation of a more effective pan-regional, polyspecific antivenom. BIOLOGICAL SIGNIFICANCE: Bungarus sindanus, an endemic krait species distributed mainly in the Sindh Province of Pakistan is a cause of snake envenomation. Its specific antivenom is, however, lacking. The proteomic study of its venom revealed a substantial presence of κ-bungarotoxins and β-bungarotoxins. The toxin profile corroborates the potent neurotoxicity and lethality of the venom tested in vivo. The heterologous Indian VINS polyvalent antivenom (VPAV) cross-reacted with B. sindanus venom and cross-neutralized the venom neurotoxicity and lethality in mice, albeit the efficacy was moderate. The findings imply that B. sindanus and the phylogenetically related B. caeruleus of India share certain venom epitopes. Research should be advanced to improve the efficacy spectrum of a pan-regional polyspecific antivenom.
  8. Yap HY, Tan NH, Ng ST, Tan CS, Fung SY
    Front Pharmacol, 2018;9:103.
    PMID: 29491836 DOI: 10.3389/fphar.2018.00103
    Naturally occurring anti-glycation compounds have drawn much interest in recent years as they show potential in reducing or preventing the risk of chronic complications for diabetic patients. In this study, annotation of the genome-transcriptome data from tiger milk mushroom (Lignosus rhinocerus, syn.Lignosus rhinocerotis) to PlantCyc enzymes database identified transcripts that are related to anti-diabetic properties, and these include genes that are involved in carotenoid and abscisic acid biosynthesis as well as genes that code for glyoxalase I, catalase-peroxidases, and superoxide dismutases. The existence of these genes suggests thatL. rhinocerusmay contain bioactive compound(s) with anti-glycation properties that can be exploited for management of diabetic complications. A medium-molecular-weight (MMW) fraction which was obtained from a combination of cold water extraction and Sephadex®G-50 (fine) gel filtration chromatography ofL. rhinocerussclerotia powder was demonstrated to exhibit potent anti-glycation activity. The fraction specifically inhibited the formation of N𝜀-(carboxymethyl)lysine, pentosidine, and other advanced glycation end-product (AGE) structures in a human serum albumin-glucose system, with an IC50value of 0.001 mg/ml, almost 520 times lower than that of the positive control, aminoguanidine hydrochloride (IC50= 0.52 mg/ml). Its ability to suppress protein glycation may be partly associated with its strong superoxide anion radical scavenging activity (10.16 ± 0.12 mmol TE/g). Our results suggest that the MMW fraction ofL. rhinocerusshows potential to be developed into a potent glycation inhibitor for preventing AGE-mediated diabetic complications.
  9. Fung SY, Tan NH, Kong BH, Lee SS, Tan YS, Sabaratnam V
    Int J Med Mushrooms, 2017;19(12):1093-1099.
    PMID: 29431070 DOI: 10.1615/IntJMedMushrooms.2017024550
    Amauroderma rugosum is a wild medicinal mushroom also known as budak cendawan sawan. Members of the indigenous Malaysian Temuan community wear the fresh stipes as a necklace to prevent epileptic seizure and unremitting crying by babies. In our previous studies, A. rugosum exhibited significant antioxidant and anti-inflammatory activities. The aim of this study was to determine the toxicity (in the event that a stipe is accidentally bitten) and cytotoxicity of this mushroom on Sprague-Dawley rats and selected cell lines. A. rugosum was orally administered to test chemicals according to Organisation for Economic and Co-operation and Development guidelines (TG 425, adopted October 3, 2008). Blood samples were hematologically and biochemically analyzed and multiple tissue sections from each organ were examined using light microscopy. Cytotoxicity of various A. rugosum extracts was also determined against MCF-7 and A-549 cell lines. Our results showed that oral administration of a single dose of mycelial powder (2000 mg/kg) had no adverse effect on the growth rate or hematological and clinical biochemical parameters. Histological studies showed that the treatments did not induce any pathological changes in the organs of the tested animals. All the treated rats survived beyond the 14-day observation period. Methanol and cold and hot water extracts of the freeze-dried mycelial culture of A. rugosum exhibited no or little cytotoxic effect against the MCF-7 and A-549 cell lines.
  10. Wong KY, Tan CH, Tan KY, Quraishi NH, Tan NH
    J Proteomics, 2018 03 20;175:156-173.
    PMID: 29278784 DOI: 10.1016/j.jprot.2017.12.012
    Naja naja is a medically important species that is distributed widely in South Asia. Its venom lethality and neutralization profile have been reported to vary markedly, but the understanding of this phenomenon has been limited without a comprehensive venom profile for the Pakistani N. naja. This study set to investigate the venom proteome of Pakistani N. naja applying reverse-phase HPLC, SDS-PAGE, mass spectrometry and data-mining approaches. The venom enzymatics and antigen binding activities were also studied. A total of 55 venom proteins comprising 11 toxin families were identified, with three-finger toxins (75.29%) being the predominant component, followed by phospholipase A2 (14.24%) and other proteins (<5%). The enzyme activities of most of the venom components were also detected in this work. The high abundance of long neurotoxins (LNTX, 21.61%) in the Pakistani N. naja venom is varied from that reported for N. naja venoms from other geographical origins. The venom exhibited high immunoreactivity toward Naja kaouthia monovalent antivenom (NKMAV), which was raised against the LNTX-predominated heterologous Thai N. kaouthia venom. Together, the findings show that the Pakistani N. naja venom is predominated by LNTX, and this unique property correlates with its high lethality and effective neutralization by the heterologous NKMAV.

    BIOLOGICAL SIGNIFICANCE: This study reveals the compositional details of the venom proteome of Pakistani spectacled cobra (Naja naja). The protein subtypes, proteoforms, and relative abundances of individual proteins were comprehensively revealed in this study, following a venom decomplexing proteomic approach. The Pakistani cobra venom is unique among the rest of the N. naja venom composition reported thus far, as it contains a high abundance of alpha-neurotoxins (predominated by long neurotoxins); these are highly potent post-synaptic neuromuscular blockers that cause paralysis and are principal toxins that account for the high lethality of the venom (LD50=0.2μg/g in mice). In contrast, previous reports showed that the N. naja venoms of India and Sri Lanka had a lower content of neurotoxins and a relatively higher value of LD50. The Pakistani cobra venom demonstrated sufficient immunoreactivity toward three antivenom products manufactured outside Pakistan (including the Indian product VINS), however the potency of antigen binding was the highest toward Naja kaouthia monovalent antivenom, a heterologous antivenom raised against a long neurotoxin-predominated venom of the Thai monocled cobra. From the practical standpoint, the findings indicate that the treatment of N. naja envenomation in Pakistan may be improved by the production of a locale-specific antivenom, in which the antivenom produced contains more antibodies that can target and react more specifically with the highly abundant lethal neurotoxins in the Pakistani N. naja venom.

  11. Tan CH, Wong KY, Huang LK, Tan KY, Tan NH, Wu WG
    Toxins (Basel), 2022 Dec 07;14(12).
    PMID: 36548757 DOI: 10.3390/toxins14120860
    Naja nivea (Cape Cobra) is endemic to southern Africa. Envenoming by N. nivea is neurotoxic, resulting in fatal paralysis. Its venom composition, however, has not been studied in depth, and specific antivenoms against it remain limited in supply. Applying a protein decomplexation approach, this study unveiled the venom proteome of N. nivea from South Africa. The major components in the venom are cytotoxins/cardiotoxins (~75.6% of total venom proteins) and alpha-neurotoxins (~7.4%), which belong to the three-finger toxin family. Intriguingly, phospholipase A2 (PLA2) was undetected-this is a unique venom phenotype increasingly recognized in the African cobras of the Uraeus subgenus. The work further showed that VINS African Polyvalent Antivenom (VAPAV) exhibited cross-reactivity toward the venom and immunorecognized its toxin fractions. In mice, VAPAV was moderately efficacious in cross-neutralizing the venom lethality with a potency of 0.51 mg/mL (amount of venom completely neutralized per milliliter of antivenom). In the challenge-rescue model, VAPAV prevented death in 75% of experimentally envenomed mice, with slow recovery from neurotoxicity up to 24 h. The finding suggests the potential para-specific utility of VAPAV for N. nivea envenoming, although a higher dose or repeated administration of the antivenom may be required to fully reverse the neurotoxic effect of the venom.
  12. Faisal T, Tan KY, Tan NH, Sim SM, Gnanathasan CA, Tan CH
    J Venom Anim Toxins Incl Trop Dis, 2021 Apr 30;27:e20200177.
    PMID: 33995514 DOI: 10.1590/1678-9199-JVATITD-2020-0177
    BACKGROUND: The western Russell's viper (Daboia russelii) is widely distributed in South Asia, and geographical venom variation is anticipated among distant populations. Antivenoms used for Russell's viper envenomation are, however, raised typically against snakes from Southern India. The present study investigated and compared the venom proteomes of D. russelii from Sri Lanka (DrSL) and India (DrI), the immunorecognition of Indian VINS Polyvalent Antivenom (VPAV) and its efficacy in neutralizing the venom toxicity.

    METHODS: The venoms of DrSL and DrI were decomplexed with C18 high-performance liquid chromatography and SDS-polyacrylamide gel electrophoresis under reducing conditions. The proteins fractionated were identified through nano-ESI-liquid chromatography-tandem mass spectrometry (LCMS/MS). The immunological studies were conducted with enzyme-linked immunosorbent assay. The neutralization of the venom procoagulant effect was evaluated in citrated human plasma. The neutralization of the venom lethality was assessed in vivo in mice adopting the WHO protocol.

    RESULTS: DrSL and DrI venom proteomes showed comparable major protein families, with phospholipases A2 (PLA2) being the most abundant (> 60% of total venom proteins) and diverse (six protein forms identified). Both venoms were highly procoagulant and lethal (intravenous median lethal dose in mice, LD50 = 0.24 and 0.32 µg/g, for DrSL and DrI, respectively), while lacking hemorrhagic and anticoagulant activities. VPAV was immunoreactive toward DrSL and DrI venoms, indicating conserved protein antigenicity in the venoms. The high molecular weight venom proteins were, however, more effectively immunorecognized than small ones. VPAV was able to neutralize the coagulopathic and lethal effects of the venoms moderately.

    CONCLUSION: Considering that a large amount of venom can be injected by Russell's viper during envenomation, the potency of antivenom can be further improved for optimal neutralization and effective treatment. Region-specific venoms and key toxins may be incorporated into the immunization procedure during antivenom production.

  13. Fung SY, Tan NH, Sim SM, Marinello E, Guerranti R, Aguiyi JC
    Indian J Exp Biol, 2011 Apr;49(4):254-9.
    PMID: 21614888
    Mucuna pruriens has been used by native Nigerians as a prophylactic for snakebite. The protective effects of M. pruriens seed extract (MPE) were investigated against the pharmacological actions of N. sputatrix (Javan spitting cobra) venom in rats. The results showed that MPE-pretreatment protected against cardiorespiratory and, to a lesser extent, neuromuscular depressant effects of N. sputatrix venom. These may be explained at least in part by the neutralisation of the cobra venom toxins by anti-MPE antibodies elicited by the MPE pretreatment.
  14. Leong PK, Sim SM, Fung SY, Sumana K, Sitprija V, Tan NH
    PLoS Negl Trop Dis, 2012;6(6):e1672.
    PMID: 22679522 DOI: 10.1371/journal.pntd.0001672
    BACKGROUND: Snake envenomation is a serious public health threat in the rural areas of Asian and African countries. To date, the only proven treatment for snake envenomation is antivenom therapy. Cross-neutralization of heterologous venoms by antivenom raised against venoms of closely related species has been reported. The present study examined the cross neutralizing potential of a newly developed polyvalent antivenom, termed Neuro Polyvalent Snake Antivenom (NPAV). NPAV was produced by immunization against 4 Thai elapid venoms.

    PRINCIPAL FINDINGS: In vitro neutralization study using mice showed that NPAV was able to neutralize effectively the lethality of venoms of most common Asiatic cobras (Naja spp.), Ophiophagus hannah and kraits (Bungarus spp.) from Southeast Asia, but only moderately to weakly effective against venoms of Naja from India subcontinent and Africa. Studies with several venoms showed that the in vivo neutralization potency of the NPAV was comparable to the in vitro neutralization potency. NPAV could also fully protect against N. sputatrix venom-induced cardio-respiratory depressant and neuromuscular blocking effects in anesthetized rats, demonstrating that the NPAV could neutralize most of the major lethal toxins in the Naja venom.

    CONCLUSIONS/SIGNIFICANCE: The newly developed polyvalent antivenom NPAV may find potential application in the treatment of elapid bites in Southeast Asia, especially Malaysia, a neighboring nation of Thailand. Nevertheless, the applicability of NPAV in the treatment of cobra and krait envenomations in Southeast Asian victims needs to be confirmed by clinical trials. The cross-neutralization results may contribute to the design of broad-spectrum polyvalent antivenom.

  15. Lee ML, Tan NH, Fung SY, Tan CS, Ng ST
    PMID: 22454675 DOI: 10.1155/2012/697603
    Lignosus rhinocerus, the tiger milk mushroom, is one of the most important medicinal mushrooms used by the indigenous people of Southeast Asia and China. It has been used to treat breast cancer. A cold water extract (LR-CW) prepared from the sclerotia of L. rhinocerus cultivar was found to exhibit antiproliferative activity against human breast carcinoma (MCF-7) and human lung carcinoma (A549), with IC(50) of 96.7 μg/mL and 466.7 μg/mL, respectively. In comparison, LR-CW did not show significant cytotoxicity against the two corresponding human normal cells, 184B5 (human breast cell) and NL 20 (human lung cell). DNA fragmentation studies suggested that the cytotoxic action of LR-CW against cancer cells is mediated by apoptosis. Sephadex G-50 gel filtration fractionation of LR-CW yielded a high-molecular-weight and a low-molecular-weight fraction. The high-molecular-weight fraction contains mainly carbohydrate (68.7%) and small amount of protein (3.6%), whereas the low-molecular-weight fraction contains 31% carbohydrate and was devoid of protein. Only the high-molecular-weight fraction exhibited antiproliferative activity against cancer cells, with IC(50) of 70.0 μg/mL and 76.7 μg/mL, respectively. Thus, the cytotoxic action of the LR-CW is due to the high-molecular-weight fraction, either the proteins or protein-carbohydrate complex.
  16. Tan KY, Tan CH, Fung SY, Tan NH
    J Proteomics, 2015 Apr 29;120:105-25.
    PMID: 25748141 DOI: 10.1016/j.jprot.2015.02.012
    Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness.
  17. Tan CH, Tan NH, Tan KY, Kwong KO
    Toxins (Basel), 2015 Feb;7(2):572-81.
    PMID: 25690691 DOI: 10.3390/toxins7020572
    Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beaked sea snake (Hydrophis schistosus, formerly known as Enhydrina schistosa) and the spine-bellied sea snake (Hydrophis curtus, formerly known as Lapemis curtus or Lapemis hardwickii) are two commonly encountered species. Australian CSL sea snake antivenom is the definitive treatment for sea snake envenomation; it is unfortunately extremely costly locally and is not widely available or adequately stocked in local hospitals. This study investigated the cross-neutralizing potential of three regionally produced anti-cobra antivenoms against the venoms of Malaysian H. schistosus and H. curtus. All three antivenoms conferred paraspecific protection from sea snake venom lethality in mice, with potency increasing in the following order: Taiwan bivalent antivenom < Thai monocled cobra monovalent antivenom < Thai neuro polyvalent antivenom (NPAV). NPAV demonstrated cross-neutralizing potencies of 0.4 mg/vial for H. schistosus venom and 0.8 mg/vial for H. curtus, which translates to a dose of less than 20 vials of NPAV to neutralize an average amount of sea snake venom per bite (inferred from venom milking). The cross-neutralization activity was supported by ELISA cross-reactivity between NPAV and the venoms of H. schistosus (58.4%) and H. curtus (70.4%). These findings revealed the potential of NPAV as a second-line treatment for sea snake envenomation in the region. Further profiling of the cross-neutralization activity should address the antivenomic basis using purified toxin-based assays.
  18. Yap MK, Fung SY, Tan KY, Tan NH
    Acta Trop, 2014 May;133:15-25.
    PMID: 24508616 DOI: 10.1016/j.actatropica.2014.01.014
    The proteome of Naja sumatrana (Equatorial spitting cobra) venom was investigated by shotgun analysis and a combination of ion-exchange chromatography and reverse phase HPLC. Shotgun analysis revealed the presence of 39 proteins in the venom while the chromatographic approach identified 37 venom proteins. The results indicated that, like other Asiatic cobra venoms, N. sumatrana contains large number of three finger toxins and phospholipases A2, which together constitute 92.1% by weight of venom protein. However, only eight of the toxins can be considered as major venom toxins. These include two phospholipases A2, three neurotoxins (two long neurotoxins and a short neurotoxin) and three cardiotoxins. The eight major toxins have relative abundance of 1.6-27.2% venom proteins and together account for 89.8% (by weight) of total venom protein. Other venom proteins identified include Zn-metalloproteinase-disintegrin, Thaicobrin, CRISP, natriuretic peptide, complement depleting factors, cobra venom factors, venom nerve growth factor and cobra serum albumin. The proteome of N. sumatrana venom is similar to proteome of other Asiatic cobra venoms but differs from that of African spitting cobra venom. Our results confirm that the main toxic action of N. sumatrana venom is neurotoxic but the large amount of cardiotoxins and phospholipases A2 are likely to contribute significantly to the overall pathophysiological action of the venom. The differences in toxin distribution between N. sumatrana venom and African spitting cobra venoms suggest possible differences in the pathophysiological actions of N. sumatrana venom and the African spitting cobra venoms, and explain why antivenom raised against Asiatic cobra venom is not effective against African spitting cobra venoms.
  19. Leong PK, Tan NH, Fung SY, Sim SM
    Trans R Soc Trop Med Hyg, 2012 Dec;106(12):731-7.
    PMID: 23062608 DOI: 10.1016/j.trstmh.2012.07.009
    Cross neutralisation of venoms by antivenom raised against closely-related species has been well documented. The spectrum of paraspecific protection of antivenom raised against Asiatic Naja and Bungarus (krait) venoms, however, has not been fully investigated. In this study, we examined the cross neutralisation of venoms from common Southeast Asian cobras and kraits by two widely used polyvalent antivenoms produced in India: Vins Polyvalent Antivenom (VPAV) and Bharat Polyvalent Antivenom (BPAV), using both in vitro and in vivo mouse protection assays. BPAV was only moderately effective against venoms of N. kaouthia (Thailand) and N. sumatrana, and either very weakly effective or totally ineffective against the other cobra and krait venoms. VPAV, on the other hand, neutralised effectively all the Southeast Asian Naja venoms tested, as well as N. naja, B. candidus and Ophiophagus hannah venoms, but the potency ranges from effective to weakly effective. In an in vivo rodent model, VPAV also neutralised the lethality of venoms from Asiatic Naja and B. candidus. In anesthetised rat studies, both antivenoms effectively protected against the N. kaouthia venom-induced cardio-respiratory depressant and neuromuscular blocking effects. Overall, our results suggest that VPAV could be used as alternative antivenom for the treatment of elapid envenomation in Southeast Asian regions including Malaysia, Thailand and certain regions of Indonesia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links