Displaying publications 41 - 54 of 54 in total

Abstract:
Sort:
  1. Kamada T, Johanis ML, Ng SY, Phan CS, Suleiman M, Vairappan CS
    Nat Prod Bioprospect, 2020 Feb;10(1):51-56.
    PMID: 32062804 DOI: 10.1007/s13659-020-00232-6
    New bioactive 13-epi-neoverrucosane diterpenoid, 5β-acetoxy-13-epi-neoverrucosanic acid (1) along with three known secondary metabolites, 13-epi-neoverrucosan-5β-ol (2), chelodane (3) and (E)-β-farnesene (4) were isolated from the MeOH extract of east Malaysia's liverwort Pleurozia subinflata. The chemical structure of new compound was elucidated by the analyses of its spectroscopic data (FTIR, NMR and HR-ESI-MS). These epi-neoverrucosane-type compounds seem to be notable chemosystematic markers for P. subinflata in Borneo. Compound 3 was widespread in marine sponges however this is the first record for 3 to be found in liverwort. These metabolites were tested for their antifungal potentials against selected fungi from the marine environment. Compound 1 exhibited effective antifungal activity against Lagenidium thermophilum.
  2. Hamada T, Kobayashi K, Arima N, Tani F, Vairappan CS, Onitsuka S, et al.
    Nat Prod Res, 2021 Dec;35(23):5075-5080.
    PMID: 32538152 DOI: 10.1080/14786419.2020.1777411
    The red alga Chondria armata is known to produce and contain a rich diversity of secondary metabolites, such as domoic acid-related alkaloids and triterpene polyethers. Our investigation on red alga C. armata from Kagoshima coast, Japan, resulted in the isolation of two new triterpene polyethers, bandokorols A (1) and B (2). The structures of these compounds were determined based on spectroscopic data such as infrared (FTIR), 1H-NMR, APT, 1H-1H-COSY, HSQC, HMBC, NOESY and FAB mass spectrometry (HRFABMS). The anticancer potentials of these compounds were tested against adult T-cell leukaemia (ATL), S1T cells and their IC50 values are reported here.
  3. Lopez JAV, Petitbois JG, Vairappan CS, Umezawa T, Matsuda F, Okino T
    Org. Lett., 2017 08 18;19(16):4231-4234.
    PMID: 28783344 DOI: 10.1021/acs.orglett.7b01869
    Two new chlorinated fatty acid amides, columbamides D (1) and E (2), along with apratoxins A and C and wewakazole, were isolated from the organic extract of a Moorea bouillonii sample from Sabah, Malaysia. Structure elucidation was accomplished by a combination of MS and NMR analyses. The total synthesis of all four stereoisomers of 1 was completed, and the absolute configuration was determined by chiral-phase HPLC and Marfey's analysis.
  4. Shamsudin KJ, Phan CS, Kulip J, Hatai K, Vairappan CS, Kamada T
    J Asian Nat Prod Res, 2019 May;21(5):435-441.
    PMID: 29502443 DOI: 10.1080/10286020.2018.1440391
    The medicinal plant, Syzygium leucoxylon or commonly known as Obah found in North Borneo was considered as traditional medicine by local committee. Two new phenolics, leucoxenols A (1) and B (2) were isolated and identified as major secondary metabolites from the leaves of S. leucoxylon. Their chemical structures were elucidated based on spectroscopic data such as NMR and HRESIMS. Furthermore, these compounds were active against selected strains of fungi.
  5. Kamada T, Kang MC, Phan CS, Zanil II, Jeon YJ, Vairappan CS
    Mar Drugs, 2018 Mar 21;16(4).
    PMID: 29561805 DOI: 10.3390/md16040099
    Soft corals are known to be prolific producers of a wide spectrum of biologically active cembranoids. One new cembranoid, sinularolide F (2), along with three known compounds, cembranolide (1), (E,E,E)-6,10,14-trimethyl-3-methylene-cis-3α,4,5,8,9,12,13,15α-octahydrocyclo tetradeca[β]furan-2(3H)-one (3), and denticulatolide (4), were isolated from the Bornean soft coral Sinularia sp. Compounds 2 and 4 showed potential anti-inflammatory activities against lipopolysaccharide-stimulated RAW 264.7 with IC50 values less than 6.25 µg/mL and anticancer activity against HL60 cell lines. The compounds' mechanisms of action were investigated via the Western blot evaluation of their protein markers. These activities could be attributed to the presence of tertiary methyl at C-8 and the compounds' 3D configurations.
  6. Nagappan T, Ramasamy P, Wahid ME, Segaran TC, Vairappan CS
    Molecules, 2011 Nov 21;16(11):9651-64.
    PMID: 22105714 DOI: 10.3390/molecules16119651
    A total of three carbazole alkaloids and essential oil from the leaves of Murraya koenigii (Rutaceae) were obtained and examined for their effects on the growth of five antibiotic resistant pathogenic bacteria and three tumor cell lines (MCF-7, P 388 and Hela). The structures of these carbazoles were elucidated based on spectroscopy data and compared with literature data, hence, were identified as mahanine (1), mahanimbicine (2) and mahanimbine (3). The chemical constituents of the essential oil were identified using Gas Chromatography-Mass Spectroscopy (GCMS). These compounds exhibited potent inhibition against antibiotic resistant bacteria such as Staphylococcus aureus (210P JTU), Psedomonas aeruginosa (ATCC 25619), Klebsiella pneumonia (SR1-TU), Escherchia coli (NI23 JTU) and Streptococcus pneumoniae (SR16677-PRSP) with significant minimum inhibition concentration (MIC) values (25.0-175.0 mg/mL) and minimum bacteriacidal concentrations (MBC) (100.0-500.0 mg/mL). The isolated compounds showed significant antitumor activity against MCF-7, Hela and P388 cell lines. Mahanimbine (3) and essential oil in particular showed potent antibacteria and cytotoxic effect with dose dependent trends (≤5.0 μg/mL). The findings from this investigation are the first report of carbazole alkaloids' potential against antibiotic resistant clinical bacteria, MCF-7 and P388 cell lines.
  7. Wijesinghe WA, Kim EA, Kang MC, Lee WW, Lee HS, Vairappan CS, et al.
    Environ Toxicol Pharmacol, 2014 Jan;37(1):110-7.
    PMID: 24317194 DOI: 10.1016/j.etap.2013.11.006
    5β-Hydroxypalisadin B, a halogenated secondary metabolite isolated from red seaweed Laurencia snackeyi was evaluated for its anti-inflammatory activity in lipopolysaccharide (LPS)-induced zebrafish embryo. Preliminary studies suggested the effective concentrations of the compound as 0.25, 0.5, 1 μg/mL for further in vivo experiments. 5β-Hydroxypalisadin B, exhibited profound protective effect in the zebrafish embryo as confirmed by survival rate, heart beat rate, and yolk sac edema size. The compound acts as an effective agent against reactive oxygen species (ROS) formation induced by LPS and tail cut. Moreover, 5β-hydroxypalisadin B effectively inhibited the LPS-induced nitric oxide (NO) production in zebrafish embryo. All the tested protective effects of 5β-hydroxypalisadin B were comparable to the well-known anti-inflammatory agent dexamethasone. According to the results obtained, 5β-hydroxypalisadin B isolated from red seaweed L. snackeyi could be considered as an effective anti-inflammatory agent which might be further developed as a functional ingredient.
  8. Ashton LA, Griffiths HM, Parr CL, Evans TA, Didham RK, Hasan F, et al.
    Science, 2019 01 11;363(6423):174-177.
    PMID: 30630931 DOI: 10.1126/science.aau9565
    Termites perform key ecological functions in tropical ecosystems, are strongly affected by variation in rainfall, and respond negatively to habitat disturbance. However, it is not known how the projected increase in frequency and severity of droughts in tropical rainforests will alter termite communities and the maintenance of ecosystem processes. Using a large-scale termite suppression experiment, we found that termite activity and abundance increased during drought in a Bornean forest. This increase resulted in accelerated litter decomposition, elevated soil moisture, greater soil nutrient heterogeneity, and higher seedling survival rates during the extreme El Niño drought of 2015-2016. Our work shows how an invertebrate group enhances ecosystem resistance to drought, providing evidence that the dual stressors of climate change and anthropogenic shifts in biotic communities will have various negative consequences for the maintenance of rainforest ecosystems.
  9. Frank K, Krell FT, Slade EM, Raine EH, Chiew LY, Schmitt T, et al.
    Ecol Lett, 2018 08;21(8):1229-1236.
    PMID: 29938888 DOI: 10.1111/ele.13095
    At the global scale, species diversity is known to strongly increase towards the equator for most taxa. According to theory, a higher resource specificity of consumers facilitates the coexistence of a larger number of species and has been suggested as an explanation for the latitudinal diversity gradient. However, only few studies support the predicted increase in specialisation or even showed opposite results. Surprisingly, analyses for detritivores are still missing. Therefore, we performed an analysis on the degree of trophic specialisation of dung beetles. We summarised 45 studies, covering the resource preferences of a total of 994503 individuals, to calculate the dung specificity in each study region. Our results highlighted a significant (4.3-fold) increase in the diversity of beetles attracted to vertebrate dung towards the equator. However, their resource specificity was low, unrelated to diversity and revealed a highly generalistic use of dung resources that remained similar along the latitudinal gradient.
  10. Matsui M, Kuraishi N, Eto K, Hamidy A, Nishikawa K, Shimada T, et al.
    Mol Phylogenet Evol, 2016 09;102:305-19.
    PMID: 27374495 DOI: 10.1016/j.ympev.2016.06.009
    A fanged frog Limnonectes kuhlii was once thought to be wide-ranging in Southeast Asia, but is now confined to its type locality Java through recent phylogenetic studies, which clarified heterospecific status of non-Javanese populations, and monophyly of Bornean populations. However, large genetic differences among Bornean populations suggest occurrence of cryptic species, which we test using dense geographic sampling. We estimated the phylogenetic relationships among samples of Bornean populations together with their putative relatives from the continental Southeast Asia, using 2517bp sequences of the 12S rRNA, tRNA(val), and 16S rRNA of mitochondrial DNA, and 2367bp sequences of the NCX1, POMC, and RAG1 of nuclear genes. In the mtDNA trees, Bornean L. kuhlii-like frogs formed a monophyletic group split into 18 species lineages including L. hikidai, with the deepest phylogenetic split separating L. cintalubang from the remaining species. Almost all of these lineages co-occur geographically, and two to three lineages were found syntopically in each locality. Co-occurrence of more than one lineage may be maintained by differential morphology and microhabitat selection. These syntopic lineages should be regarded as distinct species. Our results clearly indicate that taxonomic revision is urgent to clarify many evolutionary problems of Bornean L. kuhlii-like frogs.
  11. Chiew LY, Hackett TD, Brodie JF, Teoh SW, Burslem DFRP, Reynolds G, et al.
    J Anim Ecol, 2021 Dec 25.
    PMID: 34954816 DOI: 10.1111/1365-2656.13655
    Conservation outcomes could be greatly enhanced if strategies addressing anthropogenic land-use change considered the impacts of these changes on entire communities as well as on individual species. Examining how species interactions change across gradients of habitat disturbance allows us to predict the cascading consequences of species extinctions and the response of ecological networks to environmental change. We conducted the first detailed study of changes in a commensalist network of mammals and dung beetles across an environmental disturbance gradient, from primary tropical forest to plantations, which varied in above-ground carbon density (ACD) and mammal communities. Mammal diversity changed only slightly across the gradient, remaining high even in oil palm plantations and fragmented forest. Dung beetle species richness, however, declined in response to lower ACD and was particularly low in plantations and the most disturbed forest sites. Three of the five network metrics (nestedness, network specialization and functionality) were significantly affected by changes in dung beetle species richness and ACD, but mammal diversity was not an important predictor of network structure. Overall, the interaction networks remained structurally and functionally similar across the gradient, only becoming simplified (i.e. with fewer dung beetle species and fewer interactions) in the most disturbed sites. We suggest that the high diversity of mammals, even in disturbed forests, combined with the generalist feeding patterns of dung beetles, confer resilience to the commensalist dung beetle-mammal networks. This study highlights the importance of protecting logged and fragmented forests to maintain interaction networks and potentially prevent extinction cascades in human-modified systems.
  12. Oguri Y, Watanabe M, Ishikawa T, Kamada T, Vairappan CS, Matsuura H, et al.
    Mar Drugs, 2017 Aug 28;15(9).
    PMID: 28846653 DOI: 10.3390/md15090267
    Six new compounds, omaezol, intricatriol, hachijojimallenes A and B, debromoaplysinal, and 11,12-dihydro-3-hydroxyretinol have been isolated from four collections of Laurencia sp. These structures were determined by MS and NMR analyses. Their antifouling activities were evaluated together with eight previously known compounds isolated from the same samples. In particular, omaezol and hachijojimallene A showed potent activities (EC50 = 0.15-0.23 µg/mL) against larvae of the barnacle Amphibalanus amphitrite.
  13. Fathoni I, Petitbois JG, Alarif WM, Abdel-Lateff A, Al-Lihaibi SS, Yoshimura E, et al.
    Molecules, 2020 Sep 01;25(17).
    PMID: 32882989 DOI: 10.3390/molecules25173986
    Cyanobacteria are reported as rich sources of secondary metabolites that provide biological activities such as enzyme inhibition and cytotoxicity. Ten depsipeptide derivatives (lyngbyabellins) were isolated from a Malaysian Moorea bouillonii and a Red Sea Okeania sp.: lyngbyabellins G (1), O (2), P (3), H (4), A (7), 27-deoxylyngbyabellin A (5), and homohydroxydolabellin (6). This study indicated that lyngbyabellins displayed cytotoxicity, antimalarial, and antifouling activities. The isolated compounds were tested for cytotoxic effect against human breast cancer cells (MCF7), for antifouling activity against Amphibalanus amphitrite barnacle larvae, and for antiplasmodial effect towards Plasmodium falciparum. Lyngbyabellins A and G displayed potent antiplasmodial effect against Plasmodium, whereas homohydroxydolabellin showed moderate effect. For antifouling activity, the side chain decreases the activity slightly, but the essential feature is the acyclic structure. As previously reported, the acyclic lyngbyabellins are less cytotoxic than the corresponding cyclic ones, and the side chain increases cytotoxicity. This study revealed that lyngbyabellins, despite being cytotoxic agents as previously reported, also exhibit antimalarial and antifouling activities. The unique chemical structures and functionalities of lyngbyabellin play an essential role in their biological activities.
  14. Riutta T, Malhi Y, Kho LK, Marthews TR, Huaraca Huasco W, Khoo M, et al.
    Glob Chang Biol, 2018 07;24(7):2913-2928.
    PMID: 29364562 DOI: 10.1111/gcb.14068
    Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha-1  year-1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links