Displaying publications 41 - 47 of 47 in total

Abstract:
Sort:
  1. Acharya UR, Raghavendra U, Koh JEW, Meiburger KM, Ciaccio EJ, Hagiwara Y, et al.
    Comput Methods Programs Biomed, 2018 Nov;166:91-98.
    PMID: 30415722 DOI: 10.1016/j.cmpb.2018.10.006
    BACKGROUND AND OBJECTIVE: Liver fibrosis is a type of chronic liver injury that is characterized by an excessive deposition of extracellular matrix protein. Early detection of liver fibrosis may prevent further growth toward liver cirrhosis and hepatocellular carcinoma. In the past, the only method to assess liver fibrosis was through biopsy, but this examination is invasive, expensive, prone to sampling errors, and may cause complications such as bleeding. Ultrasound-based elastography is a promising tool to measure tissue elasticity in real time; however, this technology requires an upgrade of the ultrasound system and software. In this study, a novel computer-aided diagnosis tool is proposed to automatically detect and classify the various stages of liver fibrosis based upon conventional B-mode ultrasound images.

    METHODS: The proposed method uses a 2D contourlet transform and a set of texture features that are efficiently extracted from the transformed image. Then, the combination of a kernel discriminant analysis (KDA)-based feature reduction technique and analysis of variance (ANOVA)-based feature ranking technique was used, and the images were then classified into various stages of liver fibrosis.

    RESULTS: Our 2D contourlet transform and texture feature analysis approach achieved a 91.46% accuracy using only four features input to the probabilistic neural network classifier, to classify the five stages of liver fibrosis. It also achieved a 92.16% sensitivity and 88.92% specificity for the same model. The evaluation was done on a database of 762 ultrasound images belonging to five different stages of liver fibrosis.

    CONCLUSIONS: The findings suggest that the proposed method can be useful to automatically detect and classify liver fibrosis, which would greatly assist clinicians in making an accurate diagnosis.

  2. Yap LPP, Wong JHD, Muhammad Gowdh NF, Ng WL, Chung E, Eturajulu RC, et al.
    J Med Imaging Radiat Sci, 2021 06;52(2):257-264.
    PMID: 33531272 DOI: 10.1016/j.jmir.2021.01.003
    INTRODUCTION: Fixed volume (FV) contrast media administration during CT examination is the standard practice in most healthcare institutions. We aim to validate a customised weight-based volume (WBV) method and compare it to the conventional FV methods, introduced in a regional setting.

    METHODS: 220 patients underwent CT of the chest, abdomen and pelvis (CAP) using a standard FV protocol, and subsequently, a customised 1.0 mL/kg WBV protocol within one year. Both image sets were assessed for contrast enhancement using CT attenuation at selected regions-of-interest (ROIs). The visual image quality was evaluated by three radiologists using a 4-point Likert scale. Quantitative CT attenuation was correlated with the visual quality assessment to determine the HU's enhancement indicative of the image quality grades. Contrast media usage was calculated to estimate cost-savings from both protocols.

    RESULTS: Mean patient age was 61 ± 14 years, and weight was 56.1 ± 8.7 kg. FV protocol produced higher contrast enhancement than WBV, p 

  3. Acharya UR, Raghavendra U, Fujita H, Hagiwara Y, Koh JE, Jen Hong T, et al.
    Comput Biol Med, 2016 12 01;79:250-258.
    PMID: 27825038 DOI: 10.1016/j.compbiomed.2016.10.022
    Fatty liver disease (FLD) is reversible disease and can be treated, if it is identified at an early stage. However, if diagnosed at the later stage, it can progress to an advanced liver disease such as cirrhosis which may ultimately lead to death. Therefore, it is essential to detect it at an early stage before the disease progresses to an irreversible stage. Several non-invasive computer-aided techniques are proposed to assist in the early detection of FLD and cirrhosis using ultrasound images. In this work, we are proposing an algorithm to discriminate automatically the normal, FLD and cirrhosis ultrasound images using curvelet transform (CT) method. Higher order spectra (HOS) bispectrum, HOS phase, fuzzy, Kapoor, max, Renyi, Shannon, Vajda and Yager entropies are extracted from CT coefficients. These extracted features are subjected to locality sensitive discriminant analysis (LSDA) feature reduction method. Then these LSDA coefficients ranked based on F-value are fed to different classifiers to choose the best performing classifier using minimum number of features. Our proposed technique can characterize normal, FLD and cirrhosis using probabilistic neural network (PNN) classifier with an accuracy of 97.33%, specificity of 100.00% and sensitivity of 96.00% using only six features. In addition, these chosen features are used to develop a liver disease index (LDI) to differentiate the normal, FLD and cirrhosis classes using a single number. This can significantly help the radiologists to discriminate FLD and cirrhosis in their routine liver screening.
  4. Acharya UR, Koh JEW, Hagiwara Y, Tan JH, Gertych A, Vijayananthan A, et al.
    Comput Biol Med, 2018 03 01;94:11-18.
    PMID: 29353161 DOI: 10.1016/j.compbiomed.2017.12.024
    Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
  5. Hamyoon H, Yee Chan W, Mohammadi A, Yusuf Kuzan T, Mirza-Aghazadeh-Attari M, Leong WL, et al.
    Eur J Radiol, 2022 Dec;157:110591.
    PMID: 36356463 DOI: 10.1016/j.ejrad.2022.110591
    PURPOSE: To develop and validate a machine learning (ML) model for the classification of breast lesions on ultrasound images.

    METHOD: In the present study, three separate data cohorts containing 1288 breast lesions from three countries (Malaysia, Iran, and Turkey) were utilized for MLmodel development and external validation. The model was trained on ultrasound images of 725 breast lesions, and validation was done separately on the remaining data. An expert radiologist and a radiology resident classified the lesions based on the BI-RADS lexicon. Thirteen morphometric features were selected from a contour of the lesion and underwent a three-step feature selection process. Five features were chosen to be fed into the model separately and combined with the imaging signs mentioned in the BI-RADS reference guide. A support vector classifier was trained and optimized.

    RESULTS: The diagnostic profile of the model with various input data was compared to the expert radiologist and radiology resident. The agreement of each approach with histopathologic specimens was also determined. Based on BI-RADS and morphometric features, the model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.885, which is higher than the expert radiologist and radiology resident performances with AUC of 0.814 and 0.632, respectively in all cohorts. DeLong's test also showed that the AUC of the ML protocol was significantly different from that of the expert radiologist (ΔAUCs = 0.071, 95%CI: (0.056, 0.086), P = 0.005).

    CONCLUSIONS: These results support the possible role of morphometric features in enhancing the already well-excepted classification schemes.

  6. Tan MM, Ho WK, Yoon SY, Mariapun S, Hasan SN, Lee DS, et al.
    PLoS One, 2018;13(9):e0203469.
    PMID: 30216346 DOI: 10.1371/journal.pone.0203469
    BACKGROUND: Breast cancer risk factors have been examined extensively in Western setting and more developed Asian cities/countries. However, there are limited data on developing Asian countries. The purpose of this study was to examine breast cancer risk factors and the change of selected risk factors across birth cohorts in Malaysian women.

    METHODS: An unmatched hospital based case-control study was conducted from October 2002 to December 2016 in Selangor, Malaysia. A total of 3,683 cases and 3,980 controls were included in this study. Unconditional logistic regressions, adjusted for potential confounding factors, were conducted. The breast cancer risk factors were compared across four birth cohorts by ethnicity.

    RESULTS: Ever breastfed, longer breastfeeding duration, a higher soymilk and soy product intake, and a higher level of physical activity were associated with lower risk of breast cancer. Chinese had the lowest breastfeeding rate, shortest breastfeeding duration, lowest parity and highest age of first full term pregnancy.

    CONCLUSIONS: Our study shows that breastfeeding, soy intake and physical activity are modifiable risk factors for breast cancer. With the increasing incidence of breast cancer there is an urgent need to educate the women about lifestyle intervention they can take to reduce their breast cancer risk.

  7. Ho WK, Tan MM, Mavaddat N, Tai MC, Mariapun S, Li J, et al.
    Nat Commun, 2020 07 31;11(1):3833.
    PMID: 32737321 DOI: 10.1038/s41467-020-17680-w
    Polygenic risk scores (PRS) have been shown to predict breast cancer risk in European women, but their utility in Asian women is unclear. Here we evaluate the best performing PRSs for European-ancestry women using data from 17,262 breast cancer cases and 17,695 controls of Asian ancestry from 13 case-control studies, and 10,255 Chinese women from a prospective cohort (413 incident breast cancers). Compared to women in the middle quintile of the risk distribution, women in the highest 1% of PRS distribution have a ~2.7-fold risk and women in the lowest 1% of PRS distribution has ~0.4-fold risk of developing breast cancer. There is no evidence of heterogeneity in PRS performance in Chinese, Malay and Indian women. A PRS developed for European-ancestry women is also predictive of breast cancer risk in Asian women and can help in developing risk-stratified screening programmes in Asia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links