Displaying publications 41 - 60 of 453 in total

Abstract:
Sort:
  1. Ahmad Sarji S, Wan Abdullah W, Wastie M
    Biomed Imaging Interv J, 2006 Apr;2(2):e21.
    PMID: 21614228 DOI: 10.2349/biij.2.2.e21
    To examine the role of imaging in diagnosing and assessing fungal infections in paediatric patients undergoing chemotherapy in a facility, which had high fungal air contamination due to adjacent building construction work.
    Matched MeSH terms: Air Pollution
  2. Zhou X, Qu Y, Kim BH, Choo PY, Liu J, Du Y, et al.
    Bioresour Technol, 2014 Oct;169:265-70.
    PMID: 25062537 DOI: 10.1016/j.biortech.2014.07.012
    The effects of azide on electron transport of exoelectrogens were investigated using air-cathode MFCs. These MFCs enriched with azide at the concentration higher than 0.5mM generated lower current and coulomb efficiency (CE) than the control reactors, but at the concentration lower than 0.2mM MFCs generated higher current and CE. Power density curves showed overshoot at higher azide concentrations, with power and current density decreasing simultaneously. Electrochemical impedance spectroscopy (EIS) showed that azide at high concentration increased the charge transfer resistance. These analyses might reflect that a part of electrons were consumed by the anode microbial population rather than transferred to the anode. Bacterial population analyses showed azide-enriched anodes were dominated by Deltaproteobacteria compared with the controls. Based on these results it is hypothesized that azide can eliminate the growth of aerobic respiratory bacteria, and at the same time is used as an electron acceptor/sink.
    Matched MeSH terms: Air*
  3. Guangul FM, Sulaiman SA, Ramli A
    Bioresour Technol, 2012 Dec;126:224-32.
    PMID: 23073112 DOI: 10.1016/j.biortech.2012.09.018
    Oil palm frond biomass is abundantly available in Malaysia, but underutilized. In this study, gasifiers were evaluated based on the available literature data and downdraft gasifiers were found to be the best option for the study of oil palm fronds gasification. A downdraft gasifier was constructed with a novel height adjustment mechanism for changing the position of gasifying air and steam inlet. The oil palm fronds gasification results showed that preheating the gasifying air improved the volumetric percentage of H(2) from 8.47% to 10.53%, CO from 22.87% to 24.94%, CH(4) from 2.02% to 2.03%, and higher heating value from 4.66 to 5.31 MJ/Nm(3) of the syngas. In general, the results of the current study demonstrated that oil palm fronds can be used as an alternative energy source in the energy diversification plan of Malaysia through gasification, along with, the resulting syngas quality can be improved by preheating the gasifying air.
    Matched MeSH terms: Air/analysis*
  4. Abu Hasan H, Abdullah SR, Kofli NT, Kamarudin SK
    Bioresour Technol, 2012 Nov;124:355-63.
    PMID: 22995166 DOI: 10.1016/j.biortech.2012.08.055
    This study determined the most effective microbes acting as ammonia-oxidising (AOB) and manganese-oxidising bacteria (MnOB) for the simultaneous removal of ammonia (NH(4)(+)-N) and manganese (Mn(2+)) from water. Two conditions of mixed culture of bacteria: an acclimatised mixed culture (mixed culture: MC) in a 5-L bioreactor and biofilm attached on a plastic medium (stages of mixed culture: SMC) in a biological aerated filter were isolated and identified using Biolog MicroSystem and 16S rRNA sequencing. A screening test for determining the most effective microbe in the removal of NH(4)(+)-N and Mn(2+) was initially performed using SMC and MC, respectively, and found that Bacillus cereus was the most effective microbe for the removal of NH(4)(+)-N and Mn(2+). Moreover, the simultaneous NH(4)(+)-N and Mn(2+) removal (above 95% removal for both NH(4)(+)-N and Mn(2+)) was achieved using a biological aerated filter under various operating conditions. Thus, the strain could act as an effective microbe of AOB and a MnOB for the simultaneous removal of NH(4)(+)-N and Mn(2+).
    Matched MeSH terms: Air
  5. Hansen SB, Olsen SI, Ujang Z
    Bioresour Technol, 2012 Jan;104:358-66.
    PMID: 22137753 DOI: 10.1016/j.biortech.2011.10.069
    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral.
    Matched MeSH terms: Air Pollution/prevention & control*
  6. Rene ER, Kar S, Krishnan J, Pakshirajan K, López ME, Murthy DV, et al.
    Bioresour Technol, 2015 Aug;190:529-35.
    PMID: 25827361 DOI: 10.1016/j.biortech.2015.03.049
    The performance of a compost biofilter inoculated with mixed microbial consortium was optimized for treating a gas-phase mixture of benzene and toluene. The biofilter was acclimated to these VOCs for a period of ∼18d. The effects of concentration and flow rate on the removal efficiency (RE) and elimination capacity (EC) were investigated by varying the inlet concentration of benzene (0.12-0.95g/m(3)), toluene (0.14-1.48g/m(3)) and gas-flow rate (0.024-0.072m(3)/h). At comparable loading rates, benzene removal in the mixture was reduced in the range of 6.6-41% in comparison with the individual benzene degradation. Toluene removal in mixture was even more affected as observed from the reductions in REs, ranging from 18.4% to 76%. The results were statistically interpreted by performing an analysis of variance (ANOVA) to elucidate the main and interaction effects.
    Matched MeSH terms: Air Pollutants/isolation & purification*; Air Pollutants/chemistry
  7. Eliseus A, Bilad MR, Nordin NAHM, Putra ZA, Wirzal MDH
    Bioresour Technol, 2017 Oct;241:661-668.
    PMID: 28609754 DOI: 10.1016/j.biortech.2017.05.175
    Microalgae harvesting using membrane technology is challenging because of its high fouling propensity. As an established fouling mitigation technique, efficacy of air bubbles can be improved by maximizing the impact of shear-rates in scouring foulant. In this study, it is achieved by tilting the membrane panel. We investigate the effect of tilting angle, switching period as well as aeration rate during microalgal broth filtration. Results show that higher tilting angles (up to 20°) improve permeability of up to 2.7 times of the vertical panel. In addition, operating a one-sided panel is better than a two-sided panel, in which the later involved switching mode. One-sided membrane panel only require a half of area, yet its performance is comparable with of a large-scale module. This tilted panel can lead to significant membrane cost reductions and eventually improves the competitiveness of membrane technology for microalgae harvesting application.
    Matched MeSH terms: Air
  8. Foo, Ming Hui
    MyJurnal
    In this era, most of us are suffering some level of respiratory problem. Respiratory system of our children is even more sensitive compare to adults. As our children spending an average of 8 hours in school, indoor air quality of the classroom become an important element. Many studies have shown that indoor air quality not only affecting the respiratory system of schoolchildren but their performance in academy as well.
    Matched MeSH terms: Air Pollutants; Air Pollution, Indoor
  9. Cavaljuga S, Faulde M, Scharninghausen JJ
    Bosn J Basic Med Sci, 2003 May;3(2):46-55.
    PMID: 16223373
    At this moment, public health authorities, physicians and scientists around the world are struggling to cope with a severe and rapidly spreading new disease in humans called severe acute respiratory syndrome, or SARS. According to World Health Organisation (WHO) this appears to be the first severe and easily transmissible new disease to emerge in the 21st century. Though much about the disease remains poorly understood, including the details of the causative virus, we do know that it has features that allow it to spread rapidly along international air travel routes. As of 10 May 2003, a cumulative 7296 probable SARS cases with 526 deaths have been reported from 30 countries on three continents (WHO, ProMED). In the past week, more than 1000 new probable cases and 96 deaths were reported globally. This represents an increase of 119 new cases and 8 new deaths compared with 9 May 2003 (China (85), Taiwan (23), and Hong Kong (7) represented the overwhelming majority, with one additional case each reported from France, Malaysia, Singapore, and the United States). Only in China, as of 10 May 2003 (WHO) total of 4884 with 235 deaths have been reported. Some outbreaks have reassuring features.
    Matched MeSH terms: Air Travel
  10. Abd Aziz A, Abdullah AF, Mahmud A
    Br J Hosp Med (Lond), 2007 Nov;68(11):616-7.
    PMID: 18087856 DOI: 10.12968/hmed.2007.68.11.27686
    Matched MeSH terms: Air
  11. Ee-Ling O, Mustaffa NI, Amil N, Khan MF, Latif MT
    Bull Environ Contam Toxicol, 2015 Apr;94(4):537-42.
    PMID: 25652682 DOI: 10.1007/s00128-015-1477-9
    This study determined the source contribution of PM2.5 (particulate matter <2.5 μm) in air at three locations on the Malaysian Peninsula. PM2.5 samples were collected using a high volume sampler equipped with quartz filters. Ion chromatography was used to determine the ionic composition of the samples and inductively coupled plasma mass spectrometry was used to determine the concentrations of heavy metals. Principal component analysis with multilinear regressions were used to identify the possible sources of PM2.5. The range of PM2.5 was between 10 ± 3 and 30 ± 7 µg m(-3). Sulfate (SO4 (2-)) was the major ionic compound detected and zinc was found to dominate the heavy metals. Source apportionment analysis revealed that motor vehicle and soil dust dominated the composition of PM2.5 in the urban area. Domestic waste combustion dominated in the suburban area, while biomass burning dominated in the rural area.
    Matched MeSH terms: Air Pollutants/analysis*
  12. Tay JH, Jaafar S, Mohd Tahir N
    Bull Environ Contam Toxicol, 2014 Mar;92(3):329-33.
    PMID: 24435136 DOI: 10.1007/s00128-014-1203-z
    A short-term investigation on the chemical composition of rainwater was carried out at five selected sampling stations in Kuantan district, Pahang, Malaysia. Sampling of rainwater was conducted by event basis between September and November 2011. Rainwater samples were collected using polyethylene containers and the parameters measured were cations (sodium, potassium, ammonium, calcium and magnesium) and anions (chlorides, nitrates and sulphates). The average pH value for rainwater samples was 6.0 ± 0.57 in which most of the sampling sites exhibited pH values >5.6. Calcium and sulphate were the most abundant cation and anion, respectively, whilst the concentrations of other major ions varied according to sampling location.
    Matched MeSH terms: Air Pollutants/analysis*
  13. Wahid NB, Latif MT, Suan LS, Dominick D, Sahani M, Jaafar SA, et al.
    Bull Environ Contam Toxicol, 2014 Mar;92(3):317-22.
    PMID: 24435135 DOI: 10.1007/s00128-014-1201-1
    This study aims to determine the composition and sources of particulate matter with an aerodynamic diameter of 10 μm or less (PM10) in a semi-urban area. PM10 samples were collected using a high volume sampler. Heavy metals (Fe, Zn, Pb, Mn, Cu, Cd and Ni) and cations (Na(+), K(+), Ca(2+) and Mg(2+)) were detected using inductively coupled plasma mass spectrometry, while anions (SO4 (2-), NO3 (-), Cl(-) and F(-)) were analysed using Ion Chromatography. Principle component analysis and multiple linear regressions were used to identify the source apportionment of PM10. Results showed the average concentration of PM10 was 29.5 ± 5.1 μg/m(3). The heavy metals found were dominated by Fe, followed by Zn, Pb, Cu, Mn, Cd and Ni. Na(+) was the dominant cation, followed by Ca(2+), K(+) and Mg(2+), whereas SO4 (2-) was the dominant anion, followed by NO3 (-), Cl(-) and F(-). The main sources of PM10 were the Earth's crust/road dust, followed by vehicle emissions, industrial emissions/road activity, and construction/biomass burning.
    Matched MeSH terms: Air Pollutants/analysis*; Air Pollution/statistics & numerical data*
  14. Mohd Tahir N, Poh SC, Suratman S, Ariffin MM, Shazali NA, Yunus K
    Bull Environ Contam Toxicol, 2009 Aug;83(2):199-203.
    PMID: 19436928 DOI: 10.1007/s00128-009-9751-3
    Results from the present study in Kuala Terengganu, Malaysia indicated a significant spatial variation but generally the total suspended particulate concentrations (mean = 17.2-148 microg/m(3)) recorded were below the recommended Malaysia guideline for total suspended particulate (mean of 24-h measurement = 260 microg/m(3)). Some of the elemental composition of particulate aerosol is clearly affected by non crustal sources, e.g. vehicular emission sources. Based on correlation and enrichment analyses, the elements could be grouped into two i.e. Pb, Cd and Zn group with sources from vehicular emission (r > 0.6; enrichment factor > 10) and Al, Fe, Mn and Cr group that appears to be of crustal origin (r > 0.6; enrichment factor < 10). It can also be concluded that the mean levels of Pb (1 ng/m(3)), Cd (0.02 ng/m(3)) and Zn (2 ng/m(3)) in the study area are generally lower than other urban areas in Malaysia (Pb < 181 ng/m(3); Cd < 6 ng/m(3); Zn < 192 ng/m(3)).
    Matched MeSH terms: Air Pollutants/analysis; Air Pollutants/chemistry*
  15. Pau, J.S., Pao, William K.S., Shaharin A. Sulaiman, Halawa, E.
    MyJurnal
    Unnecessary air conditioning for thermal comfort causeds energy over consumption. As air conditioning has become irreversible, one of the solutions is to run air conditioners at minimal energy without sacrificing the comfort of occupants in air conditioned space. The approach to thermal comfort is the key to successful thermal comfort research. Fanger's model has been adopted by ASHRAE and ISO standards but its universal applications have been debated. In recent decades, adaptive model that regards humans as adaptive beings has been accepted. The static and deterministic nature of Fanger's model has limited its application in hot, humid countries, such as Malaysia. This research aims to integrate the theories of Fanger and adaptive model into a new model which is applicable in Malaysia by taking the case in lecture halls. The new Fanger's Adaptive Model is established through normalization of the thermal sensation distribution obtained in thermal chamber by Fanger. The PMV range of 80% satisfaction has been widened to -1.3 to +1.3 which adopted the theories of adaptive model, where humans have the ability to adapt to environment. The research also includes field observations on Malaysian students clothing and activity levels in lecture halls. Previous field study results which proposed 25.3°C comfort temperature for lecture halls in Malaysia together with the field observation results were used to verify the new model. About 95% of PMV falls within the new range at this comfort temperature. It is proven that Fanger's model is semi-adaptive and probabilistic and the integration of Fanger's Adaptive Model is more accurate in predicting thermal comfort in hot and humid climate.
    Matched MeSH terms: Air Conditioning
  16. Tan SL, Sulaiman S, Pingguan-Murphy B, Selvaratnam L, Tai CC, Kamarul T
    Cell Tissue Bank, 2011 Feb;12(1):59-70.
    PMID: 19953328 DOI: 10.1007/s10561-009-9164-x
    This study investigates the feasibility of processed human amnion (HAM) as a substrate for chondrogenic differentiation of mesenchymal stem cells (MSCs). HAM preparations processed by air drying (AD) and freeze drying (FD) underwent histological examination and MSC seeding in chondrogenic medium for 15 days. Monolayer cultures were used as control for chondrogenic differentiation and HAMs without cell seeding were used as negative control. Qualitative observations were made using scanning electron microscopy analysis and quantitative analyses were based on the sulfated glycosaminoglycans (GAG) assays performed on day 1 and day 15. Histological examination of HAM substrates before seeding revealed a smooth surface in AD substrates, while the FD substrates exhibited a porous surface. Cell attachment to AD and FD substrates on day 15 was qualitatively comparable. GAG were significantly highly expressed in cells seeded on FD HAM substrates. This study indicates that processed HAM is a potentially valuable material as a cell-carrier for MSC differentiation.
    Matched MeSH terms: Air
  17. Mohd S, Ghazali MI, Yusof N, Sulaiman S, Ramalingam S, Kamarul T, et al.
    Cell Tissue Bank, 2018 Dec;19(4):613-622.
    PMID: 30056604 DOI: 10.1007/s10561-018-9711-4
    Air-dried and sterilized amnion has been widely used as a dressing to treat burn and partial thickness wounds. Sterilisation at the standard dose of 25 kGy was reported to cause changes in the morphological structure as observed under the scanning electron microscope. This study aimed to quantify the changes in the ultrastructure of the air-dried amnion after gamma-irradiated at several doses by using atomic force microscope. Human placentae were retrieved from mothers who had undergone cesarean elective surgery. Amnion separated from chorion was processed and air-dried for 16 h. It was cut into 10 × 10 mm, individually packed and exposed to gamma irradiation at 5, 15, 25 and 35 kGy. Changes in the ultrastructural images of the amnion were quantified in term of diameter of the epithelial cells, size of the intercellular gap and membrane surface roughness. The longest diameter of the amnion cells reduced significantly after radiation (p air-dried amnion cells reduced in the same direction without affecting the gross ultrastructure. At 15 kGy the intercellular gap decreased significantly (p 
    Matched MeSH terms: Air
  18. Wahid NB, Latif MT, Suratman S
    Chemosphere, 2013 Jun;91(11):1508-16.
    PMID: 23336924 DOI: 10.1016/j.chemosphere.2012.12.029
    This study was conducted to determine the composition and source apportionment of surfactant in atmospheric aerosols around urban and semi-urban areas in Malaysia based on ionic compositions. Colorimetric analysis was undertaken to determine the concentrations of anionic surfactants as Methylene Blue Active Substances (MBAS) and cationic surfactants as Disulphine Blue Active Substances (DBAS) using a UV spectrophotometer. Ionic compositions were determined using ion chromatography for cations (Na(+), NH4(+), K(+), Mg(2+), Ca(2+)) and anions (F(-), Cl(-), NO3(-), SO4(2-)). Principle component analysis (PCA) combined with multiple linear regression (MLR) were used to identify the source apportionment of MBAS and DBAS. Results indicated that the concentrations of surfactants at both sampling sites were dominated by MBAS rather than DBAS especially in fine mode aerosols during the southwest monsoon. Three main sources of surfactants were identified from PCA-MLR analysis for MBAS in fine mode samples particularly in Kuala Lumpur, dominated by motor vehicles, followed by soil/road dust and sea spray. Besides, for MBAS in coarse mode, biomass burning/sea spray were the dominant source followed by motor vehicles/road dust and building material.
    Matched MeSH terms: Air Pollutants/analysis*
  19. Lee KT, Bhatia S, Mohamed AR, Chu KH
    Chemosphere, 2006 Jan;62(1):89-96.
    PMID: 15996711
    High performance sorbents for flue gas desulfurization can be synthesized by hydration of coal fly ash, calcium sulfate, and calcium oxide. In general, higher desulfurization activity correlates with higher sorbent surface area. Consequently, a major aim in sorbent synthesis is to maximize the sorbent surface area by optimizing the hydration conditions. This work presents an integrated modeling and optimization approach to sorbent synthesis based on statistical experimental design and two artificial intelligence techniques: neural network and genetic algorithm. In the first step of the approach, the main and interactive effects of three hydration variables on sorbent surface area were evaluated using a full factorial design. The hydration variables of interest to this study were hydration time, amount of coal fly ash, and amount of calcium sulfate and the levels investigated were 4-32 h, 5-15 g, and 0-12 g, respectively. In the second step, a neural network was used to model the relationship between the three hydration variables and the sorbent surface area. A genetic algorithm was used in the last step to optimize the input space of the resulting neural network model. According to this integrated modeling and optimization approach, an optimum sorbent surface area of 62.2m(2)g(-1) could be obtained by mixing 13.1g of coal fly ash and 5.5 g of calcium sulfate in a hydration process containing 100ml of water and 5 g of calcium oxide for a fixed hydration time of 10 h.
    Matched MeSH terms: Air Pollutants/analysis*
  20. Johari K, Saman N, Song ST, Cheu SC, Kong H, Mat H
    Chemosphere, 2016 Aug;156:56-68.
    PMID: 27160635 DOI: 10.1016/j.chemosphere.2016.04.114
    In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents.
    Matched MeSH terms: Air Pollutants/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links