Displaying publications 41 - 60 of 62 in total

Abstract:
Sort:
  1. Palaniandy, Samayamutthirian, Noorina Hidayu Jamil, Khairun Azizi Mohd Azizli, Syed Fuad Saiyid Hashim, Hashim Hussin
    MyJurnal
    Fine grinding of high purity talc in jet mill at low grinding pressure was carried out by varying the feed rate and classifier rotational speed. These ground particles were sonicated in laboratory ultrasonic bath by varying the soniction period at five levels. The ground and sonicated particles were characterized in terms of particle size and particle size distribution. Mechanochemical and sonochemical effect of talc was determine via X-ray diffraction. Particle shape and surface texture of the ground and sonicated product was determined via scanning electron microscope and transmission electron microscope. The ground particle size exhibited particle size below 10 µm with narrow size distribution. The reduction of peak intensity in (002) plane indicated the layered structure has been distorted. The sonicated talc shows that the thickness of the talc particles after the sonication process is 20 nm but the lateral particle size still remains in micron range. The reduction of the XRD peak intensity for (002) plane and thickness of sonicated talc as shown in SEM and TEM micrographs proves that fine grinding and sonication process produces talc nanosheets.
    Matched MeSH terms: Aircraft
  2. Rahman AA, Usman A, Chantrapromma S, Fun HK
    Acta Crystallogr C, 2003 Sep;59(Pt 9):i92-4.
    PMID: 12944636
    A sample of hydronium perchlorate, H(3)O(+) x ClO(4)(-), crystallized from ethanol at ambient temperature, was found to be orthorhombic (space group Pnma) at both 193 and 293 K, with no phase transition observed in this temperature range. This contrasts with the earlier observation [Nordman (1962). Acta Cryst. 15, 18-23] of a monoclinic phase (space group P2(1)/n) at 193 K for crystals grown at that temperature from perchloric acid. The hydronium and perchlorate ions lie across a mirror plane but it is not possible to define at either temperature a simple description of the H-atom positions due to the three-dimensional tumbling of the hydronium cation.
    Matched MeSH terms: Aircraft
  3. Kadri U, Crivelli D, Parsons W, Colbourne B, Ryan A
    Sci Rep, 2017 10 24;7(1):13949.
    PMID: 29066744 DOI: 10.1038/s41598-017-14177-3
    Analysis of data, recorded on March 8th 2014 at the Comprehensive Nuclear-Test-Ban Treaty Organisation's hydroacoustic stations off Cape Leeuwin Western Australia, and at Diego Garcia, reveal unique pressure signatures that could be associated with objects impacting at the sea surface, such as falling meteorites, or the missing Malaysian Aeroplane MH370. To examine the recorded signatures, we carried out experiments with spheres impacting at the surface of a water tank, where we observed almost identical pressure signature structures. While the pressure structure is unique to impacting objects, the evolution of the radiated acoustic waves carries information on the source. Employing acoustic-gravity wave theory we present an analytical inverse method to retrieve the impact time and location. The solution was validated using field observations of recent earthquakes, where we were able to calculate the eruption time and location to a satisfactory degree of accuracy. Moreover, numerical validations confirm an error below 0.02% for events at relatively large distances of over 1000 km. The method can be developed to calculate other essential properties such as impact duration and geometry. Besides impacting objects and earthquakes, the method could help in identifying the location of underwater explosions and landslides.
    Matched MeSH terms: Aircraft
  4. Bhuvan KC, Shrestha R, Leggat PA, Ravi Shankar P, Shrestha S
    Travel Med Infect Dis, 2021;43:102103.
    PMID: 34111566 DOI: 10.1016/j.tmaid.2021.102103
    Matched MeSH terms: Aircraft
  5. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2017 Oct 06;119(14):141802.
    PMID: 29053305 DOI: 10.1103/PhysRevLett.119.141802
    A search for charged Higgs bosons produced via vector boson fusion and decaying into W and Z bosons using proton-proton collisions at sqrt[s]=13  TeV is presented. The data sample corresponds to an integrated luminosity of 15.2  fb^{-1} collected with the CMS detector in 2015 and 2016. The event selection requires three leptons (electrons or muons), two jets with large pseudorapidity separation and high dijet mass, and missing transverse momentum. The observation agrees with the standard model prediction. Limits on the vector boson fusion production cross section times branching fraction for new charged physical states are reported as a function of mass from 200 to 2000 GeV and interpreted in the context of Higgs triplet models.
    Matched MeSH terms: Aircraft
  6. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Feb 19;116(7):071801.
    PMID: 26943527 DOI: 10.1103/PhysRevLett.116.071801
    A search for narrow resonances in proton-proton collisions at sqrt[s]=13  TeV is presented. The invariant mass distribution of the two leading jets is measured with the CMS detector using a data set corresponding to an integrated luminosity of 2.4  fb^{-1}. The highest observed dijet mass is 6.1 TeV. The distribution is smooth and no evidence for resonant particles is observed. Upper limits at 95% confidence level are set on the production cross section for narrow resonances with masses above 1.5 TeV. When interpreted in the context of specific models, the limits exclude string resonances with masses below 7.0 TeV, scalar diquarks below 6.0 TeV, axigluons and colorons below 5.1 TeV, excited quarks below 5.0 TeV, color-octet scalars below 3.1 TeV, and W^{'} bosons below 2.6 TeV. These results significantly extend previously published limits.
    Matched MeSH terms: Aircraft
  7. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 May 18;120(20):201801.
    PMID: 29864370 DOI: 10.1103/PhysRevLett.120.201801
    A search for narrow resonances decaying to bottom quark-antiquark pairs is presented, using a data sample of proton-proton collisions at sqrt[s]=8  TeV corresponding to an integrated luminosity of 19.7  fb^{-1}. The search is extended to masses lower than those reached in typical searches for resonances decaying into jet pairs at the LHC, by taking advantage of triggers that identify jets originating from bottom quarks. No significant excess of events is observed above the background predictions. Limits are set on the product of cross section and branching fraction to bottom quarks for spin 0, 1, and 2 resonances in the mass range of 325-1200 GeV. These results improve on the limits for resonances decaying into jet pairs in the 325-500 GeV mass range.
    Matched MeSH terms: Aircraft
  8. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Oct 05;121(14):141802.
    PMID: 30339442 DOI: 10.1103/PhysRevLett.121.141802
    This Letter presents the results of a search for pair-produced particles of masses above 100 GeV that each decay into at least four quarks. Using data collected by the CMS experiment at the LHC in 2015-2016, corresponding to an integrated luminosity of 38.2  fb^{-1}, reconstructed particles are clustered into two large jets of similar mass, each consistent with four-parton substructure. No statistically significant excess of data over the background prediction is observed in the distribution of average jet mass. Pair-produced squarks with dominant hadronic R-parity-violating decays into four quarks and with masses between 0.10 and 0.72 TeV are excluded at 95% confidence level. Similarly, pair-produced gluinos that decay into five quarks are also excluded with masses between 0.10 and 1.41 TeV at 95% confidence level. These are the first constraints that have been placed on pair-produced particles with masses below 400 GeV that decay into four or five quarks, bridging a significant gap in the coverage of R-parity-violating supersymmetry parameter space.
    Matched MeSH terms: Aircraft
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 13;123(24):241801.
    PMID: 31922872 DOI: 10.1103/PhysRevLett.123.241801
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at sqrt[s]=13  TeV, and correspond to an integrated luminosity of 35.9  fb^{-1}. The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.
    Matched MeSH terms: Aircraft
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Oct 13;119(15):151802.
    PMID: 29077436 DOI: 10.1103/PhysRevLett.119.151802
    Results are reported from a search for supersymmetric particles in proton-proton collisions in the final state with a single lepton, multiple jets, including at least one b-tagged jet, and large missing transverse momentum. The search uses a sample of proton-proton collision data at sqrt[s]=13  TeV recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9  fb^{-1}. The observed event yields in the signal regions are consistent with those expected from standard model backgrounds. The results are interpreted in the context of simplified models of supersymmetry involving gluino pair production, with gluino decay into either on- or off-mass-shell top squarks. Assuming that the top squarks decay into a top quark plus a stable, weakly interacting neutralino, scenarios with gluino masses up to about 1.9 TeV are excluded at 95% confidence level for neutralino masses up to about 1 TeV.
    Matched MeSH terms: Aircraft
  11. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Phys Rev Lett, 2014 Apr 25;112(16):161802.
    PMID: 24815637
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7  fb-1 of proton-proton collision data at s=8  TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the top squark mass below 360 to 410 GeV, depending on the Higgsino mass.
    Matched MeSH terms: Aircraft
  12. Clery D
    Science, 2014 May 30;344(6187):964-5.
    PMID: 24876476 DOI: 10.1126/science.344.6187.964
    Matched MeSH terms: Aircraft*
  13. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2017 Aug 25;119(8):082301.
    PMID: 28952777 DOI: 10.1103/PhysRevLett.119.082301
    The production of jets in association with Z bosons, reconstructed via the μ^{+}μ^{-} and e^{+}e^{-} decay channels, is studied in pp and, for the first time, in Pb-Pb collisions. Both data samples were collected by the CMS experiment at the LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The Pb-Pb collisions were analyzed in the 0%-30% centrality range. The back-to-back azimuthal alignment was studied in both pp and Pb-Pb collisions for Z bosons with transverse momentum p_{T}^{Z}>60  GeV/c and a recoiling jet with p_{T}^{jet}>30  GeV/c. The p_{T} imbalance x_{jZ}=p_{T}^{jet}/p_{T}^{Z}, as well as the average number of jet partners per Z, R_{jZ}, was studied in intervals of p_{T}^{Z}. The R_{jZ} is found to be smaller in Pb-Pb than in pp collisions, which suggests that in Pb-Pb collisions a larger fraction of partons associated with the Z bosons fall below the 30  GeV/c p_{T}^{jet} threshold because they lose energy.
    Matched MeSH terms: Aircraft
  14. Setu SA, Dullens RP, Hernández-Machado A, Pagonabarraga I, Aarts DG, Ledesma-Aguilar R
    Nat Commun, 2015;6:7297.
    PMID: 26073752 DOI: 10.1038/ncomms8297
    Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid fronts in such a regime, which we dub superconfinement. We find that the strong coupling between contact-line friction and geometric confinement gives rise to a new stability regime where the maximum speed for a stable moving front exhibits a distinctive response to changes in the bounding geometry. Unstable fronts develop into drop-emitting jets controlled by thermal fluctuations. Numerical simulations reveal that the dynamics in superconfined systems is dominated by interfacial forces. Henceforth, we present a theory that quantifies our experiments in terms of the relevant interfacial length scale, which in our system is the intrinsic contact-line slip length. Our findings show that length-scale overlap can be used as a new fluid-control mechanism in strongly confined systems.
    Matched MeSH terms: Aircraft
  15. Sreenath S, Sudhakar K, Yusop AF
    J Environ Manage, 2021 Dec 01;299:113639.
    PMID: 34479146 DOI: 10.1016/j.jenvman.2021.113639
    Sustainability has become a focus area for practitioners and scholars due to the growing socio-economic issues. The sustainability of airport operations is being raised in various international platforms. This paper aims to identify the dimensions of sustainability and evaluate sustainable practices in airports of selected ASEAN countries. The various dimensions associated with the environmental aspect are energy management, emissions management, water and effluents management, solid waste management. It was understood that noise management, employee development, and community investment belong to the social dimension. Similarly, the factors such as economic contribution, passenger experience, airport safety, and security are inclined to economic dimensions of sustainability. It was found that environmentally sustainable practices have greater importance than social and economic initiatives in the airport context which provide quantifiable benefits for airports in the long term. Airport operators in South East Asia strived to mitigate carbon emissions, reduce waste and effluents, enhance the economic contribution, satisfy passengers, and meet employee needs. Compared to the total economic and social benefits obtained from these airports, the negative impacts of airport operation (such as noise emission from aircraft) are minimal but significant. The most common sustainable initiatives in airports, such as employee development, energy management, and passenger safety, supported sustainable development goals (SDG) 8, SDG 9, and SDG 11. A weak connection is observed between SDG 14 & SDG 15 and the airport's sustainable practices. The new technological innovations are concentrated in busy and profitable airports. A slow trend towards the adoption of new technologies for sustainable practices is observed in airports. The paper concludes that major airport operators in South-East Asia have effectively responded to the growing sustainability challenges in aviation markets. The sustainable dimensions and practices discussed will be valuable resource for airports striving to achieve sustainability goals.
    Matched MeSH terms: Aircraft
  16. Venugopal A, Mohammad R, Koslan MFS, Sayd Bakar SR, Ali A
    Materials (Basel), 2021 May 06;14(9).
    PMID: 34066461 DOI: 10.3390/ma14092414
    The environmental condition in which the Royal Malaysian Airforce is currently operating its aircraft is prone to corrosion. This is due to the high relative humidity and temperature. With most of its aircraft being in the legacy aircraft era, the aircraft's main construction consists of the aluminium 2024 material. However, this material is prone to corrosion, thus reducing fatigue life and leading to fatigue failure. Using the concept of either Safe Life or Damage Tolerance as its fatigue design philosophy, the RMAF adopts the Aircraft Structure Integrity Program (ASIP) to monitor its structural integrity. With the current problem of not having the structural limitation on corrosion-damaged structure, the RMAF has embarked on its fatigue testing method. Finite Element (FE) studies and flight tests were conducted, and the outcome is summarized. The conclusion is that the longeron tested on the aircraft can withstand the operational load, and its yield strength is below the ultimate yield strength of the material. These research outcomes will also enhance the ASIP for other aircraft platforms in the RMAF fleet for its structure life assessment or service life extension program.
    Matched MeSH terms: Aircraft
  17. Ruwaimana M, Satyanarayana B, Otero V, M Muslim A, Syafiq A M, Ibrahim S, et al.
    PLoS One, 2018;13(7):e0200288.
    PMID: 30020959 DOI: 10.1371/journal.pone.0200288
    Satellite data and aerial photos have proved to be useful in efficient conservation and management of mangrove ecosystems. However, there have been only very few attempts to demonstrate the ability of drone images, and none so far to observe vegetation (species-level) mapping. The present study compares the utility of drone images (DJI-Phantom-2 with SJ4000 RGB and IR cameras, spatial resolution: 5cm) and satellite images (Pleiades-1B, spatial resolution: 50cm) for mangrove mapping-specifically in terms of image quality, efficiency and classification accuracy, at the Setiu Wetland in Malaysia. Both object- and pixel-based classification approaches were tested (QGIS v.2.12.3 with Orfeo Toolbox). The object-based classification (using a manual rule-set algorithm) of drone imagery with dominant land-cover features (i.e. water, land, Avicennia alba, Nypa fruticans, Rhizophora apiculata and Casuarina equisetifolia) provided the highest accuracy (overall accuracy (OA): 94.0±0.5% and specific producer accuracy (SPA): 97.0±9.3%) as compared to the Pleiades imagery (OA: 72.2±2.7% and SPA: 51.9±22.7%). In addition, the pixel-based classification (using a maximum likelihood algorithm) of drone imagery provided better accuracy (OA: 90.0±1.9% and SPA: 87.2±5.1%) compared to the Pleiades (OA: 82.8±3.5% and SPA: 80.4±14.3%). Nevertheless, the drone provided higher temporal resolution images, even on cloudy days, an exceptional benefit when working in a humid tropical climate. In terms of the user-costs, drone costs are much higher, but this becomes advantageous over satellite data for long-term monitoring of a small area. Due to the large data size of the drone imagery, its processing time was about ten times greater than that of the satellite image, and varied according to the various image processing techniques employed (in pixel-based classification, drone >50 hours, Pleiades <5 hours), constituting the main disadvantage of UAV remote sensing. However, the mangrove mapping based on the drone aerial photos provided unprecedented results for Setiu, and was proven to be a viable alternative to satellite-based monitoring/management of these ecosystems. The improvements of drone technology will help to make drone use even more competitive in the future.
    Matched MeSH terms: Aircraft*
  18. MacKenzie AR, Langford B, Pugh TA, Robinson N, Misztal PK, Heard DE, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3177-95.
    PMID: 22006961 DOI: 10.1098/rstb.2011.0053
    We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity.
    Matched MeSH terms: Aircraft
  19. Lim GHC, Lim BCW, Flaherty GT
    J Travel Med, 2020 03 13;27(2).
    PMID: 31808935 DOI: 10.1093/jtm/taz096
    Matched MeSH terms: Aircraft*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links