METHODS: We collected and analyzed functional near-infrared spectroscopy data of 38 participants while performing the revised lateralized attention network tast.
RESULTS: Elite players were significantly faster than novices (p = .005), and the experts' overall accuracy rate (ACC) was higher than that of novices (p = .001). The effect of the executive network on reaction time was higher in novices than in elite players (p = .008) and experts (p = .004). The effect of the executive network on the ACC was lower in elite players than in experts (p = .009) and novices (p = .010). Finally, elite player had higher flanker conflict effects on RT (p = .005) under the invalid cue condition. the effect of the alertness network and orientation on the ACC was lower in elite players than in novices (p = .000) and experts (p = .022). Changes in the blood oxygen level-dependent signal related to the flanker effect were significantly different in the right dorsolateral prefrontal cortex (F=3.980, p = .028) and right inferior frontal gyrus (F=3.703, p = .035) among the three groups. Elit players showed more efficient executive control (reduced conflict effect on ACC) (p = .006)in the RH.The changes related to the effect of blood oxygen level on orienting were significantly different in the right frontal eye fields (F=3.883, p = .030) among the three groups, Accompanied by significant activation of the right dorsolateral prefrontal cortex(p = .026).
CONCLUSION: Our findings provide partial evidence of the superior cognitive performance and high neural efficiency of elite ice hockey players during cognitive tasks. These results demonstrate the right hemisphere superiority for executive control.We also found that specific brain activation in hockey players does not show a clear and linear relationship with skill level.
DESIGN: Overview of systematic reviews with assessment of reviews' methodological quality.
DATA SOURCES: PubMed, Web of Science, Scopus, Cochrane Database of Systematic Reviews, SPORTDiscus, ProQuest, PsycINFO and SciELO.
ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Systematic reviews with/without meta-analyses examining associations of RO with health-related indices and exercise performances in athletes and physically active individuals.
RESULTS: Fourteen systematic reviews (seven with meta-analyses) of observational studies, with low-to-critically-low methodological quality, were included. Two reviews found associations between RO and decreased sleep duration in athletes and physically active individuals. One review suggested athletes may experience more pronounced reductions in sleep duration than physically active individuals. One review found associations between RO and impaired sleep quality in athletes and physically active individuals. RO was associated with decreased energy, carbohydrate and water intake in adult-aged athletes, but not adolescents. One review suggests RO was associated with athletes' increased feelings of fatigue and decreased vigour. No association was found between RO and athletes' lean mass or haematological indices. RO was unfavourably associated with changes in athletes' performance during high-intensity exercise testing.
CONCLUSION: Continuance of training during RO could be associated with athletes' mood state disturbances, decreased sleep duration and performance decline during high-intensity exercise testing, while preserving lean mass. However, careful interpretation is necessary due to the low-to-critically-low methodological quality of the included reviews.
METHODS: This study aimed to compile and synthesize the existing studies on the effects of PT on healthy athletes' technical skill performance. A comprehensive search of SCOPUS, PubMed, Web of Science Core Collection, and SPORTDiscus databases was performed on 3rd May 2023. PICOS was employed to establish the inclusion criteria: 1) healthy athletes; 2) a PT program; 3) compared a plyometric intervention to an active control group; 4) tested at least one measure of athletes' technical skill performance; and 5) randomized control designs. The methodological quality of each individual study was evaluated using the PEDro scale. The random-effects model was used to compute the meta-analyses. Subgroup analyses were performed (participant age, gender, PT length, session duration, frequency, and number of sessions). Certainty or confidence in the body of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE).
RESULTS: Thirty-two moderate-high-quality studies involving 1078 athletes aged 10-40 years met the inclusion criteria. The PT intervention lasted for 4 to 16 weeks, with one to three exercise sessions per week. Small-to-moderate effect sizes were found for performance of throwing velocity (i.e., handball, baseball, water polo) (ES = 0.78; p < 0.001), kicking velocity and distance (i.e., soccer) (ES = 0.37-0.44; all p < 0.005), and speed dribbling (i.e., handball, basketball, soccer) (ES = 0.85; p = 0.014), while no significant effects on stride rate (i.e., running) were noted (ES = 0.32; p = 0.137). Sub-analyses of moderator factors included 16 data sets. Only training length significantly modulated PT effects on throwing velocity (> 7 weeks, ES = 1.05; ≤ 7 weeks, ES = 0.29; p = 0.011). The level of certainty of the evidence for the meta-analyzed outcomes ranged from low to moderate.
CONCLUSION: Our findings have shown that PT can be effective in enhancing technical skills measures in youth and adult athletes. Sub-group analyses suggest that PT longer (> 7 weeks) lengths appear to be more effective for improving throwing velocity. However, to fully determine the effectiveness of PT in improving sport-specific technical skill outcomes and ultimately enhancing competition performance, further high-quality research covering a wider range of sports is required.
OBJECTIVES: This study adopts a systematic literature review to (1) examine the effects of resistance training on the performance of adolescent swimmers, and (2) summarize their training methods and intensity.
METHODS: The literature search was undertaken in five international databases: the SCOUPS, PubMed, EBSCOhost (SPORTDiscus), CNKL, Web of Science. The searches covered documents in English and Chinese published until 30th December 2020. Electronic databases using various keywords related to "strength training" and "adolescent swimmers" were searched. Sixteen studies met the inclusion and exclusion criteria where the data was then systematically reviewed using the PRISMA guideline. Furthermore, the physical therapy evidence database (PEDro) scale was used to measure each study's scientific rigor.
RESULTS: This review found that to improve the swimming performance of adolescents, two types of resistance training were used, specifically in water and on land, where both types of training can improve swimming performance. In addition, training with two types of resistance machines were better in the water than with one equipment. Resistance training can improve the swimming performance of adolescent swimmers at 50 m, 100 m, 200 m and 400 m distances. However, most studies only focused on the swimming performance at 50 m and 100 m lengths. A low-intensity, high-speed resistance training programme is recommended for adolescent swimmers to obtain the best training results.
CONCLUSION: Water or land resistance training can improve the swimming performance. Given that both types of exercises have their strengths and weaknesses, combining these methods may enhance the swimmers' performance. In addition, despite the starting and turning phases consuming up to one-third of the total swimming time for short distances, literature in this area is limited.
SYSTEMATIC REVIEW REGISTRATION: https://www.crd.york.ac.uk/prospero, identifier: CRD42021231510.
METHODS: We conducted a comprehensive search on March 15, 2024, using Web of Science, PubMed, Scopus, and EBSCOhost. Eligibility criteria for selecting studies were established based on the PICOS framework: (i) Population-healthy soccer players; (ii) Intervention-SAQ training; (iii) Comparison condition (conventional training or traditional training); (iv) Outcome-physical performance (speed, agility, strength, etc.); (v) Study design-randomized controlled trials. The PEDro scale was employed to evaluate the methodological quality of each study, and a random-effects model was used for the meta-analysis.
RESULTS: A total of 11 studies met the inclusion criteria for the systematic literature review. One study with low PEDro score was excluded, and one was excluded based on Cochrane bias risk assessment. Finally, 9 studies were included in the meta-analysis, comprising 498 soccer players. Overall, the results indicated a significant impact of SAQ training on physical qualities and dribbling speed among soccer players. Specifically, there was a moderate effect size for sprint performance (5m, 10m, 20m) (ES = 0.75; p < 0.01), change of direction ability (COD) (ES = 0.35; p < 0.001), power (vertical and horizontal jumps) (ES = 0.67; p < 0.01), while flexibility showed no significant impact (ES = 0.11; p > 0.05). Moreover, change-of-direction dribbling demonstrated a significant effect (ES = 0.58; p < 0.01).
CONCLUSION: Overall, SAQ training effectively enhances speed, COD, explosiveness, and change-of-direction dribbling specific performance in adolescent soccer players, particularly in sprinting. However, it does not have an advantage in improving flexibility. Further high-quality studies encompassing a broader range of exercises are needed to fully determine the effectiveness of SAQ training in improving other physical qualities and technical skills of soccer players, as well as ultimately enhancing match performance.