Displaying publications 41 - 60 of 379 in total

Abstract:
Sort:
  1. Rozainee M, Ngo SP, Salema AA, Tan KG, Ariffin M, Zainura ZN
    Bioresour Technol, 2008 Mar;99(4):703-13.
    PMID: 17379511
    This study was focused on investigating the optimum fluidising velocity during the combustion of rice husk in a bench-scale fluidised bed combustor (ID 210mm) to obtain low carbon ash in the amorphous form. When all other parameters are held constant, the optimum fluidizing velocity aids in almost complete combustion, thereby releasing the entrapped carbon for further conversion. This results in ash with consistently low carbon content (less than 2wt%). The range of fluidising velocities investigated was from as low as 1.5U(mf) to as high as 8U(mf). It was found that the optimum fluidising velocity was approximately 3.3U(mf) as the mixing of rice husk with the bed was good with a high degree of penetration into the sand bed. The resulting ash retained its amorphous form with low residual carbon content (at 2.88wt%) and minimal sand contamination as shown by the X-ray diffraction analysis.
    Matched MeSH terms: Bioreactors*
  2. Mel M, Sopyan I, Nor YA
    Med J Malaysia, 2008 Jul;63 Suppl A:18-20.
    PMID: 19024963
    Tricalcium phosphate ceramic microcarrier has been developed and introduced to a new possibility for the culture of anchorage dependent animal cells of DF1. It was observed that the number of attached cells was increased with shorter time for both spinner vessel and stirred tank (ST) bioreactor. For those bioreactors, the total viable cell number that had been obtained is about 1.2 x 10(5) cell/ml.
    Matched MeSH terms: Bioreactors*
  3. Ghafari S, Hasan M, Aroua MK
    Bioresour Technol, 2008 Jul;99(10):3965-74.
    PMID: 17600700
    Nitrates in different water and wastewater streams raised concerns due to severe impacts on human and animal health. Diverse methods are reported to remove nitrate from water streams which almost fail to entirely treat nitrate, except biological denitrification which is capable of reducing inorganic nitrate compounds to harmless nitrogen gas. Review of numerous studies in biological denitrification of nitrate containing water resources, aquaculture wastewaters and industrial wastewater confirmed the potential of this method and its flexibility towards the remediation of different concentrations of nitrate. The denitrifiers could be fed with organic and inorganic substrates which have different performances and subsequent advantages or disadvantages. Review of heterotrophic and autotrophic denitrifications with different food and energy sources concluded that autotrophic denitrifiers are more effective in denitrification. Autotrophs utilize carbon dioxide and hydrogen as the source of carbon substrate and electron donors, respectively. The application of this method in bio-electro reactors (BERs) has many advantages and is promising. However, this method is not so well established and documented. BERs provide proper environment for simultaneous hydrogen production on cathodes and appropriate consumption by immobilized autotrophs on these cathodes. This survey covers various designs and aspects of BERs and their performances.
    Matched MeSH terms: Bioreactors
  4. Abd-Aziz S, Fernandez CC, Salleh MM, Illias RM, Hassan MA
    Appl Biochem Biotechnol, 2008 Aug;150(2):193-204.
    PMID: 18633736 DOI: 10.1007/s12010-008-8140-4
    Shrimps have been a popular raw material for the burgeoning marine and food industry contributing to increasing marine waste. Shrimp waste, which is rich in organic compounds is an abundant source of chitin, a natural polymer of N-acetyl-D-glucosamine (GluNac), a reducing sugar. For this respect, chitinase-producing fungi have been extensively studied as biocontrol agents. Locally isolated Trichoderma virens UKM1 was used in this study. The effect of agitation and aeration rates using colloidal chitin as control substrate in a 2-l stirred tank reactor gave the best agitation and aeration rates at 200 rpm and 0.33 vvm with 4.1 U/l per hour and 5.97 U/l per hour of maximum volumetric chitinase activity obtained, respectively. Microscopic observations showed shear sensitivity at higher agitation rate of the above system. The oxygen uptake rate during the highest chitinase productivity obtained using sun-dried ground shrimp waste of 1.74 mg of dissolved oxygen per gram of fungal biomass per hour at the kappaL a of 8.34 per hour.
    Matched MeSH terms: Bioreactors/microbiology*
  5. Ariffin H, Hassan MA, Shah UK, Abdullah N, Ghazali FM, Shirai Y
    J Biosci Bioeng, 2008 Sep;106(3):231-6.
    PMID: 18929997 DOI: 10.1263/jbb.106.231
    In this study, endoglucanase was produced from oil palm empty fruit bunch (OPEFB) by a locally isolated aerobic bacterium, Bacillus pumilus EB3. The effects of the fermentation parameters such as initial pH, temperature, and nitrogen source on the endoglucanase production were studied using carboxymethyl cellulose (CMC) as the carbon source. Endoglucanase from B. pumilus EB3 was maximally secreted at 37 degrees C, initial pH 7.0 with 10 g/l of CMC as carbon source, and 2 g/l of yeast extract as organic nitrogen source. The activity recorded during the fermentation was 0.076 U/ml. The productivity of the enzyme increased twofold when 2 g/l of yeast extract was used as the organic nitrogen supplement as compared to the non-supplemented medium. An interesting finding from this study is that pretreated OPEFB medium showed comparable results to CMC medium in terms of enzyme production with an activity of 0.063 U/ml. As OPEFB is an abundant solid waste at palm oil mills, it has the potential of acting as a substrate in cellulase production.
    Matched MeSH terms: Bioreactors/microbiology*
  6. Alshiyab H, Kalil MS, Hamid AA, Yusoff WM
    Pak J Biol Sci, 2008 Oct 01;11(19):2336-40.
    PMID: 19137867
    The effect of removal of resultant gas resulted in enhancement of the H2 yield. The technique of CO2 scavenging resulted in H2 yield being improved from 408 mL g(-1) to reach the maximum of 422 mL g'. The highest hydrogen productivity of 87.9 ml L(-1) h(-1) was obtained by CO2 scavenging. Biomass concentration was enhanced to 1.47 g L(-1), Y(P,X) of 287 ml g(-1) L(-1), Y(X/S) of 0.294 and Y(H2/s) of 0.0377 by the use of CO2 scavenging. The results suggested that the presence of the gaseous products in fermentation medium and headspace adversely effect biomass growth and hydrogen production.
    Matched MeSH terms: Bioreactors
  7. Chew TL, Bhatia S
    Bioresour Technol, 2008 Nov;99(17):7911-22.
    PMID: 18434141 DOI: 10.1016/j.biortech.2008.03.009
    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.
    Matched MeSH terms: Bioreactors*
  8. Suja F, Donnelly T
    Water Sci Technol, 2008;58(5):977-83.
    PMID: 18824794 DOI: 10.2166/wst.2008.454
    A comparative study to explore the characteristics of partially and fully packed biological aerated filters (BAFs) in the removal of carbon pollutant, reveals that the partial-bed reactor can perform comparably well with the full-bed reactor. The organic removal rate was 5.34 kg COD m(-3) d(-1) at Organic Loading Rates (OLR) 5.80+/-0.31 kg COD m(-3) d(-1) for the full-bed, and 5.22 kg COD m(-3) d(-1) at OLR 5.79+/-0.29 kg COD m(-3) d(-1) for the partial-bed. In the partial-bed system, where the masses of biomass were only 41-51% of those of the full-bed, the maximum carbon removal limit was still between 5 to 6 kg COD m(-3) d(-1). At organic loadings above 5.0 kg COD m(-3) d(-1), the carbon removal capacity in both systems was limited by the mass and activity of microorganisms. The SRT in the full and partial-bed reactors was primarily controlled by the biomass loss in the effluent and during backwash operation. The SRT was reduced from 20.08 days at OLR 4.18+/-0.20 kg COD m(-3) d(-1) to 7.62 days at OLR 5.80+/-0.31 kg COD m(-3) d(-1) in the full-bed, and from 7.17 days to 4.21 days in the partial-bed. After all, SRT values in the partial-bed were always lower than those in the full-bed.
    Matched MeSH terms: Bioreactors/microbiology
  9. Ruzaidi, A., Abbe Maleyki, Amin, I., Nawalyah, A.G., Muhajir, H., Pauliena, M.B.S.M., et al.
    MyJurnal
    The objective of the study was to investigate the hypoglycaemic properties of Malaysian cocoa (Theobroma cacao) polyphenols extract in-vivo and insulin sensitivity in-vitro. Cocoa extract (CE) (containing 190 - 286 mg total polyphenol per gram extract) was prepared from fermented and roasted (140°C, 20 min) beans by extracting with 80% ethanol in the ratio of 1 to 10. For the in-vivo study, the CE was administered in three dosages (1%, 2%, and 3%) to groups of normal and diabetic rats for a period of 4 weeks by forcefeeding. Results showed that dosages of 1% and 3% CE significantly reduced (p < 0.05) plasma glucose levels in the diabetic rats. An in-vitro study (BRIN-BD11 cell lines) was used to evaluate the effect of CE on insulinsensitivity. The results demonstrated that CE at a concentration of 0.1 mg/ml significantly increased (p < 0.05) insulin level compared to the control. The results of this study showed that Malaysian cocoa polyphenol extract have the potential of being an insulin-mimetic agent. Further studies are on-going to elucidate the underlying mechanisms of polyphenols present in CE that contribute to the reduction of plasma glucose levels and insulin mimicking activity.
    Matched MeSH terms: Bioreactors
  10. Halim SF, Kamaruddin AH, Fernando WJ
    Bioresour Technol, 2009 Jan;100(2):710-6.
    PMID: 18819793 DOI: 10.1016/j.biortech.2008.07.031
    This study aimed to develop an optimal continuous procedure of lipase-catalyzes transesterification of waste cooking palm oil in a packed bed reactor to investigate the possibility of large scale production further. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was used to optimize the two important reaction variables packed bed height (cm) and substrate flow rate(ml/min) for the transesterification of waste cooking palm oil in a continuous packed bed reactor. The optimum condition for the transesterification of waste cooking palm oil was as follows: 10.53 cm packed bed height and 0.57 ml/min substrate flow rate. The optimum predicted fatty acid methyl ester (FAME) yield was 80.3% and the actual value was 79%. The above results shows that the RSM study based on CCRD is adaptable for FAME yield studied for the current transesterification system. The effect of mass transfer in the packed bed reactor has also been studied. Models for FAME yield have been developed for cases of reaction control and mass transfer control. The results showed very good agreement compatibility between mass transfer model and the experimental results obtained from immobilized lipase packed bed reactor operation, showing that in this case the FAME yield was mass transfer controlled.
    Matched MeSH terms: Bioreactors*
  11. Poh PE, Chong MF
    Bioresour Technol, 2009 Jan;100(1):1-9.
    PMID: 18657414 DOI: 10.1016/j.biortech.2008.06.022
    Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed.
    Matched MeSH terms: Bioreactors/microbiology*
  12. Alam MZ, Mansor MF, Jalal KC
    J Hazard Mater, 2009 Mar 15;162(2-3):708-15.
    PMID: 18599210 DOI: 10.1016/j.jhazmat.2008.05.085
    Optimization of decolorization of methylene blue (MB) dye by lignin peroxidase (LiP) enzyme produced by white-rot fungus Phanerochaete chrysosporium using sewage treatment plant (STP) sludge as a major substrate was carried out in the laboratory. Optimization by the one-factor-at-a-time (OFAT) and statistical approach was carried out to determine the process conditions on optimum decolorization of MB dye using LiP enzyme in static mode. The OFAT method indicated that the optimum conditions for decolorization of MB dye (removal: 14-40%) was at temperature 55 degrees C, pH 5.0 with hydrogen peroxide (H(2)O(2)) concentration 4.0mM, MB dye concentration 20mg/L and LiP activity 0.487U/ml. The addition of veratryl alcohol to the reaction mixtures did not contribute any further increases in decolorization. The initial concentration of MB and the activity of LiP enzyme were further optimized using response surface methodology (RSM). The contour and surface plots suggested that the optimum initial concentration of MB and LiP activity predicted were 15mg/L and 0.687U/ml, respectively for the removal of 65%. The validation of the model showed that the decolorization process gave the higher removal of 90% in agitation mode compared to the static mode with 65% for 60min of incubation time by LiP enzyme.
    Matched MeSH terms: Bioreactors
  13. Chew TL, Bhatia S
    Bioresour Technol, 2009 May;100(9):2540-5.
    PMID: 19138514 DOI: 10.1016/j.biortech.2008.12.021
    Catalytic cracking of crude palm oil (CPO) and used palm oil (UPO) were studied in a transport riser reactor for the production of biofuels at a reaction temperature of 450 degrees C, with residence time of 20s and catalyst-to-oil ratio (CTO) of 5 gg(-1). The effect of HZSM-5 (different Si/Al ratios), beta zeolite, SBA-15 and AlSBA-15 were studied as physically mixed additives with cracking catalyst Rare earth-Y (REY). REY catalyst alone gave 75.8 wt% conversion with 34.5 wt% of gasoline fraction yield using CPO, whereas with UPO, the conversion was 70.9 wt% with gasoline fraction yield of 33.0 wt%. HZSM-5, beta zeolite, SBA-15 and AlSBA-15 as additives with REY increased the conversion and the yield of organic liquid product. The transport riser reactor can be used for the continuous production of biofuels from cracking of CPO and UPO over REY catalyst.
    Matched MeSH terms: Bioreactors*
  14. Alam MZ, Mansor MF, Jalal KC
    J Ind Microbiol Biotechnol, 2009 May;36(5):757-64.
    PMID: 19259713 DOI: 10.1007/s10295-009-0548-5
    A laboratory-scale study was carried out to produce lignin peroxidase (ligninase) by white rot fungus (Phanerochaete chrysosporium) using sewage-treatment-plant (STP) sludge as the major substrate. The optimization was done using full-factorial design (FFD) with agitation and aeration as the two parameters. Nine experiments indicated by the FFD were fermented in a stirred-tank bioreactor for 3 days. A second-order quadratic model was developed using the regression analysis of the experimental results with the linear, quadratic, and interaction effects of the parameters. Analysis of variance (ANOVA) showed a high coefficient of determination (R (2)) value of 0.972, thus indicating a satisfactory fit of the quadratic model with the experimental data. Using statistical analysis, the optimum aeration and agitation rates were determined to be 2.0 vvm and 200 rpm, respectively, with a maximum activity of 225 U l(-1) in the first 3 days of fermentation. The validation experiment showed the maximum activity of lignin peroxidase was 744 U l(-1) after 5 days of fermentation. The results for the tests of the stability of lignin peroxidase showed that the activity was more than 80% of the maximum for the first 12 h of incubation at an optimum pH of 5 and temperature of 55 degrees C.
    Matched MeSH terms: Bioreactors/microbiology*
  15. Goh CP, Seng CE, Sujari AN, Lim PE
    Environ Technol, 2009 Jun;30(7):725-36.
    PMID: 19705610 DOI: 10.1080/09593330902911689
    The objective of this study is to evaluate the performance of sequencing batch biofilm reactors (SBBRs) and sequencing batch reactor (SBR) in the simultaneous removal of p-nitrophenol (PNP) and ammoniacal nitrogen. SBBRs involved the use of polyurethane sponge cubes and polyethylene rings, respectively, as carrier materials. The results demonstrate that complete removal of PNP was achievable for the SBR and SBBRs up to the PNP concentration of 350 mg/l (loading rate of 0.368 kg/m3 d). At this loading rate, the average ammoniacal nitrogen removal efficiency for the SBR and SBBR (with polyethylene rings) was reduced to 86% and 96%, respectively. However, the SBBR (with polyurethane sponge cubes) still managed to achieve an almost 100% ammoniacal nitrogen removal. Based on the results, the performance of the SBBRs was better than that of SBR in PNP and ammoniacal nitrogen removal. The results of the gas chromatography mass spectroscopy, high-performance liquid chromatography and ultraviolet-visible analyses indicate that complete mineralization of PNP was achieved in all of the reactors.
    Matched MeSH terms: Bioreactors*
  16. Bari MN, Alam MZ, Muyibi SA, Jamal P, Abdullah-Al-Mamun
    Bioresour Technol, 2009 Jun;100(12):3113-20.
    PMID: 19231166 DOI: 10.1016/j.biortech.2009.01.005
    A sequential optimization based on statistical design and one-factor-at-a-time (OFAT) method was employed to optimize the media constituents for the improvement of citric acid production from oil palm empty fruit bunches (EFB) through solid state bioconversion using Aspergillus niger IBO-103MNB. The results obtained from the Plackett-Burman design indicated that the co-substrate (sucrose), stimulator (methanol) and minerals (Zn, Cu, Mn and Mg) were found to be the major factors for further optimization. Based on the OFAT method, the selected medium constituents and inoculum concentration were optimized by the central composite design (CCD) under the response surface methodology (RSM). The statistical analysis showed that the optimum media containing 6.4% (w/w) of sucrose, 9% (v/w) of minerals and 15.5% (v/w) of inoculum gave the maximum production of citric acid (337.94 g/kg of dry EFB). The analysis showed that sucrose (p<0.0011) and mineral solution (p<0.0061) were more significant compared to inoculum concentration (p<0.0127) for the citric acid production.
    Matched MeSH terms: Bioreactors/microbiology*
  17. Alam MZ, Kabbashi NA, Hussin SN
    J Ind Microbiol Biotechnol, 2009 Jun;36(6):801-8.
    PMID: 19294441 DOI: 10.1007/s10295-009-0554-7
    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.
    Matched MeSH terms: Bioreactors/microbiology*
  18. Abdeshahian P, Samat N, Yusoff WM
    Pak J Biol Sci, 2009 Aug 01;12(15):1049-55.
    PMID: 19943460
    The production of xylanase from palm kernel cake as a substrate was studied in solid substrate fermentation. The simultaneous effects of three independent variables, namely incubation temperature, initial moisture content of substrate and air flow rate on xylanase production were evaluated by response surface methodology using central composite face centered design. A total of 18 experiments were carried out in which Aspergillus niger FTCC 5003 was cultivated on palm kernel cake in a column bioreactor for 7 days under incubation temperature, moisture level and aeration rate determined. Test results showed that the highest xylanase activity of 174.88 U g(-1) was produced at incubation temperature, initial moisture level and aeration rate of 25 degrees C, 60% and 1.5 L min(-1), respectively. The statistical analysis of the experimental results revealed that the linear effect of incubation temperature and quadratic term of initial moisture content had highly significant effects on xylanase production (p<0.01). Statistical results also showed that interaction effect between incubation temperature and initial moisture content as well as interaction effect between moisture level and aeration rate influenced the yield ofxylanase at probability levels of 95%. Optimum conditions determined by statistical model for attaining maximum xylanase production were incubation temperature of 25 degrees C, initial moisture level of 63% and aeration rate of 1.76 L min(-1). The xylanase activity of 192.50 U g(-1) was obtained when solid substrate fermentation was performed under the optimal circumstances.
    Matched MeSH terms: Bioreactors
  19. Chaibakhsh N, Abdul Rahman MB, Abd-Aziz S, Basri M, Salleh AB, Abdul Rahman RN
    J Ind Microbiol Biotechnol, 2009 Sep;36(9):1149-55.
    PMID: 19479288 DOI: 10.1007/s10295-009-0596-x
    Immobilized Candida antarctica lipase-catalyzed esterification of adipic acid and oleyl alcohol was investigated in a solvent-free system (SFS). Optimum conditions for adipate ester synthesis in a stirred-tank reactor were determined by the response surface methodology (RSM) approach with respect to important reaction parameters including time, temperature, agitation speed, and amount of enzyme. A high conversion yield was achieved using low enzyme amounts of 2.5% w/w at 60 degrees C, reaction time of 438 min, and agitation speed of 500 rpm. The good correlation between predicted value (96.0%) and actual value (95.5%) implies that the model derived from RSM allows better understanding of the effect of important reaction parameters on the lipase-catalyzed synthesis of adipate ester in an organic solvent-free system. Higher volumetric productivity compared to a solvent-based system was also offered by SFS. The results demonstrate that the solvent-free system is efficient for enzymatic synthesis of adipate ester.
    Matched MeSH terms: Bioreactors
  20. Wong YS, Kadir MO, Teng TT
    Bioresour Technol, 2009 Nov;100(21):4969-75.
    PMID: 19560338 DOI: 10.1016/j.biortech.2009.04.074
    Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (Y(G)), specific biomass decay (b), maximum specific biomass growth rate (mu(max)), saturation constant (K(s)) and critical retention time (Theta(c)) were in the range of 0.990 g VSS/g COD(removed) day, 0.024 day(-1), 0.524 day(-1), 203.433 g COD l(-1) and 1.908 day, respectively.
    Matched MeSH terms: Bioreactors
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links