METHODS: A systematic review of the literature was conducted to identify relevant studies on the effects of caffeic acid on bone. A comprehensive search was conducted from July to November 2020 using PubMed, Scopus, Cochrane Library and Web of Science databases. Cellular, animal and human studies reporting the effects of caffeic acid, as a single compound, on bone cells or bone were considered.
RESULTS: The literature search found 226 articles on this topic, but only 24 articles met the inclusion criteria and were included in this review. The results showed that caffeic acid supplementation reduced osteoclastogenesis and bone resorption, possibly through its antioxidant potential and increased expression of osteoblast markers. However, some studies showed that caffeic acid did not affect bone resorption in ovariectomized rats and might impair bone mechanical properties in normal rats.
CONCLUSION: Caffeic acid potentially regulates the bone remodelling process by inhibiting osteoclastogenesis and bone resorption, as well as osteoblast apoptosis. Thus, it has medicinal values against bone diseases.
MATERIALS AND RESULTS: Thirty-five paraffin-embedded ameloblastoma cases, ameloblastoma-derived cell lines (AM-1), and primary cultures of ameloblastoma stromal fibroblasts (ASF) were used. Immunohistochemistry, MTT assay, Western blotting, and RT-PCR were performed on these samples. Parenchyma-stromal CCN2 overexpression correlated significantly with fibrous-type stroma, but not with myxoid-type stroma, suggesting a role of CCN2 in fibrosis (P < 0.05). Recombinant CCN2 induction of enhanced ASF proliferation in AM-1 medium supports this view. Conversely, BMP4 and TGF-β were expressed in myxoid-type fibroblasts, but little expression was found in parenchyma. RANKL-positive and CD68-positive stromal cell populations were significantly greater in myxoid-type tumor areas than in fibrous-type tumor areas, while a higher Ki-67 labeling index was recorded in ameloblastoma with fibrous-type stroma. These data suggest that stromal properties influence bone resorption-related activities and growth rates, respectively.
CONCLUSIONS: These results suggest that the effects of secreted growth factors are governed by ameloblastoma parenchyma-stromal interactions. CCN2 promotes fibrogenesis independent of TGF-β signaling. Absence of CCN2 expression is associated with a phenotypic switch to a myxoid-type microenvironment that is conducive for TGF-β/BMP4 signaling to promote osteoclastogenesis.
METHODS: Premenopausal women (n = 136, mean age 41 (±5) years) and postmenopausal women [n = 121, mean age 59 (±4) years] were recruited, and each age group randomised into two groups to take two glasses per day of control = regular milk (500 mg calcium per day) or intervention (Int) = fortified milk (1000 mg calcium for pre-M women and 1200 mg calcium for PM women, 96 mg magnesium, 2.4 mg zinc, 15 µg vitamin D, 4 g FOS-inulin per day). At baseline, week 4 and week 12 serum minerals and bone biochemical markers were measured and bone density was measured at baseline.
RESULTS: Mean 25-hydroxyvitamin D [25(OH) vitamin D3] levels among groups were between 49 and 65 nmol/L at baseline, and over the 12 weeks of supplementation, the fortified milk improved vitamin D status in both Int groups. CTx-1 and PINP reduced significantly in both Pre-M and PM groups over the 12 weeks, with the changes in CTx-1 being significantly different (P bone resorption in young and older women, fortified milk is measurably more effective.
METHODS: Noni leaves (three doses) and black tea water extracts were fed to ovariectomized rats for 4 mo, and their effects (analyzed via mechanical measurements, micro-computed tomography scan, and reverse transcriptase polymerase chain reaction mRNA) were compared with Remifemin (a commercial phytoestrogen product from black cohosh).
RESULTS: The water extracts (dose-dependently for noni leaves) increased bone regeneration biomarker (runt-related transcription factor 2, bone morphogenetic protein 2, osteoprotegerin, estrogen receptor 1 [ESR1], collagen type I alpha 1A) expressions and reduced the inflammatory biomarkers (interleukin-6, tumor necrosis factor-α, nuclear factor [NF]-κB, and receptor activator of NF-κB ligand) mRNA expressions/levels in the rats. The extracts also improved bone physical and mechanical properties. The extracts demonstrated bone regeneration through improving bone size and structure, bone mechanical properties (strength and flexibility), and bone mineralization and density.
CONCLUSIONS: The catechin-rich extract favored bone regeneration and suppressed bone resorption. The mechanisms involved enhancing osteoblast generation and survival, inhibiting osteoclast growth and activities, suppressing inflammation, improving bone collagen synthesis and upregulating ESR1 expression to augment phytoestrogenic effects. Estrogen deficiency bone loss and all extracts studied (best effect from Morinda leaf at 300 mg/kg body weight) mitigated the loss, indicating benefits for the aged and menopausal women.
Methods: The rats were either OVX or sham OVX (sham), then were randomly assigned into three groups, G1: sham, G2: OVX and G3: OVX+L. helveticus (1 mL of 108-109 colony forming units). The supplementation was force-fed to the rats once a day for 16 weeks while control groups were force-fed with demineralized water.
Results: L. helveticus upregulated the expression of Runx2 and Bmp2, increased serum osteocalcin, bone volume/total volume and trabecular thickness, and decreased serum C-terminal telopeptide and total porosity percentage. It also altered bone microstructure, as a result increasing bone mineral density and bone strength.
Conclusion: Our results indicate that L. helveticus attenuates bone remodeling and consequently improves bone health in OVX rats by increasing bone formation along with bone resorption reduction. This study suggests a potential therapeutic effect of L. helveticus (ATCC 27558) on postmenopausal osteoporosis.
METHODS: Fifty-six female Sprague-Dawley rats were randomly allocated into eight groups (n = 7): SHAM (healthy sham control); OVX (ovarietomized) nontreated rats (negative control); OVX + Remifemin (100 mg/kg body weight), and 2% green tea extract (positive controls); OVX + OS 50% ethanolic and aqueous extracts, both at either 150 or 300 mg/kg. After 16 weeks, the rats' bones and blood were evaluated for osteoporosis indicators (protein and mRNA expressions), micro-computed tomography for bone histomorphometry, and three-point bending test for tibia mechanical strength.
RESULTS: The extracts dose-dependently and significantly (P bone strength and flexibility, bone mineral density, bone formation protein markers (P1NP), and bone histomorphometry. All extracts reduced the inflammation biomarker (interleukin-6). The extracts up-regulated osteoblastogenesis (bone morphogenetic protein-2) and collagen-1 synthesis (collagen type 1 alpha-1) mRNA expressions, and down-regulated bone resorption (TNFSF11 and nuclear factor-kappa B) mRNA expressions. Both the water and 50% ethanolic extract were effective. The effective dose is equivalent to 25 to 50 mg/kg extract for humans.
CONCLUSIONS: The extract showed bone-protective and antiosteoporotic effects (improving bone strength, flexibility, bone density, and bone morphometry) by reducing inflammation and the bone resorption biomarkers, while enhancing bone formation biomarkers and collagen synthesis.