Displaying publications 41 - 60 of 78 in total

Abstract:
Sort:
  1. Chandrasekaran H, Govind SK, Panchadcharam C, Bathmanaban P, Raman K, Thergarajan G
    Parasit Vectors, 2014;7:469.
    PMID: 25358755 DOI: 10.1186/s13071-014-0469-7
    Blastocystis sp., a widely prevalent intestinal protozoan parasite is found in a wide range of animals, including humans. The possibility of zoonotic transmission to human from birds especially ostriches led us to investigate on the cross infectivity of Blastocystis sp. isolated from the ostrich feces as well as the phenotypic and subtype characteristics. There is a need to investigate this especially with the rising number of ostrich farms due to the growing global ostrich industry.
    Matched MeSH terms: DNA, Protozoan/genetics
  2. Al-Mekhlafi AM, Mahdy MA, Al-Mekhlafi HM, Azazy AA, Fong MY
    Parasit Vectors, 2011;4:94.
    PMID: 21619624 DOI: 10.1186/1756-3305-4-94
    Malaria remains a significant health problem in Yemen with Plasmodium falciparum being the predominant species which is responsible for 90% of the malaria cases. Despite serious concerns regarding increasing drug resistance, chloroquine is still used for the prevention and treatment of malaria in Yemen. This study was carried out to determine the prevalence of choloroquine resistance (CQR) of P. falciparum isolated from Yemen based on the pfcrt T76 mutation.
    Matched MeSH terms: DNA, Protozoan/genetics
  3. Iqbal A, Lim YA, Surin J, Sim BL
    PLoS One, 2012;7(2):e31139.
    PMID: 22347442 DOI: 10.1371/journal.pone.0031139
    Currently, there is a lack of vital information in the genetic makeup of Cryptosporidium especially in developing countries. The present study aimed at determining the genotypes and subgenotypes of Cryptosporidium in hospitalized Malaysian human immunodeficiency virus (HIV) positive patients.
    Matched MeSH terms: DNA, Protozoan/genetics*
  4. Chew CH, Lim YA, Lee PC, Mahmud R, Chua KH
    J Clin Microbiol, 2012 Dec;50(12):4012-9.
    PMID: 23035191 DOI: 10.1128/JCM.06454-11
    Malaria remains one of the major killers of humankind and persists to threaten the lives of more than one-third of the world's population. Given that human malaria can now be caused by five species of Plasmodium, i.e., Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, and the recently included Plasmodium knowlesi, there is a critical need not only to augment global health efforts in malaria control but also, more importantly, to develop a rapid, accurate, species-sensitive/species-specific, and economically effective diagnostic method for malaria caused by these five species. Therefore, in the present study, a straightforward single-step hexaplex PCR system targeting five human Plasmodium 18S small-subunit rRNAs (ssu rRNAs) was designed, and the system successfully detected all five human malaria parasites. In addition, this system enables the differentiation of single infection as well as mixed infections up to the two-species level. This assay was validated with 50 randomly blinded test and 184 clinical samples suspected to indicate malaria. This hexaplex PCR system is not only an ideal alternative for routine malaria diagnosis in laboratories with conventional PCR machines but also adds value to diagnoses when there is a lack of an experienced microscopist or/and when the parasite morphology is confusing. Indeed, this system will definitely enhance the accuracy and accelerate the speed in the diagnosis of malaria, as well as improve the efficacy of malaria treatment and control, in addition to providing reliable data from epidemiological surveillance studies.
    Matched MeSH terms: DNA, Protozoan/genetics
  5. Mohammed Mahdy AK, Surin J, Wan KL, Mohd-Adnan A, Al-Mekhlafi MS, Lim YA
    Acta Trop, 2009 Oct;112(1):67-70.
    PMID: 19560431 DOI: 10.1016/j.actatropica.2009.06.012
    This study was conducted to identify genotypes related risk factors of Giardia intestinalis in an Orang Asli (aboriginal) community in Pahang, Malaysia. Stool samples were collected from 321 individuals aged between 2 and 76 years old, of whom 160 were males and 161 were females. Faecal samples were processed with trichrome staining technique for the primary identification of G. intestinalis. Molecular identification was carried out by the amplification of a partial SSU rRNA gene using nested PCR. PCR products were purified and genotyped. 42 samples successfully amplified from the 76 positive faecal samples, only 1 was Assemblage A, the rest were Assemblage B. Risk analysis based on the detected genotypes of Giardia using univariate analysis and logistic regression identified three significant risk factors of giardiasis caused by assemblage B which included children =12 years (OR=13.56, 95% CI=1.79-102.64, p=0.012), females (OR=2.52, 95% CI=1.11-5.75, p=0.027) and eating fresh fruits (OR=7.78, 95% CI=1.01-60.00, p=0.049). Assemblage B infection was significantly correlated with clinical symptoms of giardiasis (OR=2.4, 95% CI=1.13-5.12, p=0.019). Females infected with Assemblage B were at higher risk of manifesting gastroenteritis signs and symptoms (OR=3.9, 95% CI=1.50-10.31, p=0.004). It has been concluded that giardiasis is still a public health problem in Orang Asli community and most commonly caused by assemblage B. The dynamic of transmission is most probably anthroponotic which is human to human either directly or indirectly through contaminated food. This route of transmission should be considered in the control strategy of the disease. Mass treatment together with health education could be the most practical intervention for reducing the infection. Those at high risk should receive more attention from public health authorities.
    Matched MeSH terms: DNA, Protozoan/genetics
  6. Divis PCS, Duffy CW, Kadir KA, Singh B, Conway DJ
    Mol Ecol, 2018 02;27(4):860-870.
    PMID: 29292549 DOI: 10.1111/mec.14477
    Plasmodium knowlesi is a significant cause of human malaria transmitted as a zoonosis from macaque reservoir hosts in South-East Asia. Microsatellite genotyping has indicated that human infections in Malaysian Borneo are an admixture of two highly divergent sympatric parasite subpopulations that are, respectively, associated with long-tailed macaques (Cluster 1) and pig-tailed macaques (Cluster 2). Whole-genome sequences of clinical isolates subsequently confirmed the separate clusters, although fewer of the less common Cluster 2 type were sequenced. Here, to analyse population structure and genomic divergence in subpopulation samples of comparable depth, genome sequences were generated from 21 new clinical infections identified as Cluster 2 by microsatellite analysis, yielding a cumulative sample size for this subpopulation similar to that for Cluster 1. Profound heterogeneity in the level of intercluster divergence was distributed across the genome, with long contiguous chromosomal blocks having high or low divergence. Different mitochondrial genome clades were associated with the two major subpopulations, but limited exchange of haplotypes from one to the other was evident, as was also the case for the maternally inherited apicoplast genome. These findings indicate deep divergence of the two sympatric P. knowlesi subpopulations, with introgression likely to have occurred recently. There is no evidence yet of specific adaptation at any introgressed locus, but the recombinant mosaic types offer enhanced diversity on which selection may operate in a currently changing landscape and human environment. Loci responsible for maintaining genetic isolation of the sympatric subpopulations need to be identified in the chromosomal regions showing fixed differences.
    Matched MeSH terms: DNA, Protozoan/genetics
  7. Tan TC, Ong SC, Suresh KG
    Parasitol Res, 2009 Oct;105(5):1283-6.
    PMID: 19603182 DOI: 10.1007/s00436-009-1551-5
    This represents the first study to determine the genetic diversity of Blastocystis sp. among cancer and HIV/AIDS patients. Forty Blastocystis sp. isolates obtained from 20 cancer and 20 HIV/AIDS patients were genotyped by PCR using seven pairs of known sequenced-tagged site primers. Out of the 40 isolates, 38 were identified as one of the known genotypes and two isolates were negative with all the STS primers. Blastocystis sp. subtype 3 which is reported to be associated with disease was found to be predominant among the study subjects.
    Matched MeSH terms: DNA, Protozoan/genetics*
  8. Yap NJ, Vythilingam I, Hoh BP, Goh XT, Muslim A, Ngui R, et al.
    Parasit Vectors, 2018 Dec 05;11(1):626.
    PMID: 30518419 DOI: 10.1186/s13071-018-3234-5
    BACKGROUND: The merozoite surface protein-1 (MSP-1) gene encodes for a leading malaria vaccine candidate antigen. However, its extensive polymorphic nature represents a major obstacle to the development of a protective vaccine. Previously, a pilot study was carried out to explore the sequence variation of the C-terminal 42 kDa fragment within P. knowlesi MSP-1 gene (PkMSP-142) based on 12 clinical samples; however, further study on an adequate sample size is vital in estimating the genetic diversity of the parasite population.

    METHODS: In the present study, we included a larger sample size of P. knowlesi (83 samples) covering eight states of Malaysia to determine the genetic polymorphism, natural selection and haplotype groups of the gene fragment coding PkMSP-142. The region flanking PkMSP-142 was amplified by PCR and directly sequenced. Genetic diversity, haplotype diversity, population genetic differentiation and natural selection were determined in order to study the polymorphic characteristic of PkMSP-142.

    RESULTS: A high level of genetic diversity (Hd = 0.970 ± 0.007; л = 0.01079 ± 0.00033) was observed among the 83 P. knowlesi samples, confirming the extensive genetic polymorphism exhibited among the P. knowlesi population found in Malaysia. A total of 18 distinct haplotypes with 17 amino acid changes were identified, whereby 15 were new haplotypes. High population differentiation values were observed within samples from Peninsular Malaysia and Malaysian Borneo. The 42 kDa fragments of P. knowlesi from Malaysian Borneo were found to be acting on balancing selection whilst purifying selection was suggested to act on isolates from Peninsular Malaysia. The separation of PkMSP-142 haplotypes into two main groups based on geographical separation has further supported the existence of two distinct P. knowlesi lineages.

    CONCLUSIONS: A high level of genetic diversity was observed among PkMSP-142 in Malaysia, whereby most of the polymorphisms were found within the 33 kDa region. Taken together, these data will be useful in order to understand the nature of P. knowlesi population in Malaysia as well as the design and development of a MSP-142 based knowlesi malaria vaccine.

    Matched MeSH terms: DNA, Protozoan/genetics
  9. Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Saif-Ali R, Al-Mekhlafi AM, Surin J
    Parasit Vectors, 2011;4:233.
    PMID: 22166488 DOI: 10.1186/1756-3305-4-233
    Malaria is still a public health problem in Malaysia especially in the interior parts of Peninsular Malaysia and the states of Sabah and Sarawak (East Malaysia). This is the first study on the genetic diversity and genotype multiplicity of Plasmodium falciparum in Malaysia.
    Matched MeSH terms: DNA, Protozoan/genetics
  10. Yap NJ, Goh XT, Koehler AV, William T, Yeo TW, Vythilingam I, et al.
    Infect Genet Evol, 2017 10;54:39-46.
    PMID: 28634105 DOI: 10.1016/j.meegid.2017.06.019
    Plasmodium knowlesi, a malaria parasite of macaques, has emerged as an important parasite of humans. Despite the significance of P. knowlesi malaria in parts of Southeast Asia, very little is known about the genetic variation in this parasite. Our aim here was to explore sequence variation in a molecule called the 42kDa merozoite surface protein-1 (MSP-1), which is found on the surface of blood stages of Plasmodium spp. and plays a key role in erythrocyte invasion. Several studies of P. falciparum have reported that the C-terminus (a 42kDa fragment) of merozoite surface protein-1 (MSP-142; consisting of MSP-119 and MSP-133) is a potential candidate for a malaria vaccine. However, to date, no study has yet investigated the sequence diversity of the gene encoding P. knowlesi MSP-142 (comprising Pk-msp-119 and Pk-msp-133) among isolates in Malaysia. The present study explored this aspect. Twelve P. knowlesi isolates were collected from patients from hospitals in Selangor and Sabah Borneo, Malaysia, between 2012 and 2014. The Pk-msp-142 gene was amplified by PCR and directly sequenced. Haplotype diversity (Hd) and nucleotide diversity (л) were studied among the isolates. There was relatively high genetic variation among P. knowlesi isolates; overall Hd and л were 1±0.034 and 0.01132±0.00124, respectively. A total of nine different haplotypes related to amino acid alterations at 13 positions, and the Pk-MSP-119 sequence was found to be more conserved than Pk-msp-133. We have found evidence for negative selection in Pk-msp-42 as well as the 33kDa and 19kDa fragments by comparing the rate of non-synonymous versus synonymous substitutions. Future investigations should study large numbers of samples from disparate geographical locations to critically assess whether this molecule might be a potential vaccine target for P. knowlesi.
    Matched MeSH terms: DNA, Protozoan/genetics
  11. Kundave VR, Ram H, Shahzad M, Garg R, Banerjee PS, Nehra AK, et al.
    Infect Genet Evol, 2019 11;75:103962.
    PMID: 31302242 DOI: 10.1016/j.meegid.2019.103962
    Genetic characterization of Theileria species infecting bovines in India was attempted targeting the 18S ribosomal RNA region of the parasite. Blood samples of bovines (n = 452), suspected for haemoprotozoan infections, from 9 different states of the country were microscopically examined for Theileria species infection. Four Theileria spp. positive blood samples from each state were randomly utilized for PCR amplification of the 18S rRNA gene (approx. 1529 bp) followed by cloning and sequencing. The sequence data analysis of all the 36 isolates revealed that 33 isolates had high sequence similarity with published sequences of T. annulata, whereas 3 isolates (MF287917, MF287924 and MF287928) showed close similarity with published sequences of T. orientalis. Sequence homology within the isolates ranged between 95.8 and 100% and variation in the length of targeted region was also noticed in different isolates (1527-1538 nt). Phylogenetic tree created for T. annulata sequences revealed that a total of 24 Indian isolates formed a major clade and grouped together with isolates originating from countries like China, Spain, Turkey and USA. Remaining 09 isolates clustered in a separate group and were closely related to the TA5 isolate of T. annulata (a new genotype) originating from India and also with the isolates from East Asian countries like Japan and Malaysia. All the three T. orientalis isolates had minimal intraspecific variation (99-100% homology) amongst themselves. Further, in the phylogenetic analysis T. orientalis Indian isolates were found to cluster away from other 14 isolates of T. buffeli/sergenti/orientalis originating from different countries (Australia, China, Indonesia and Spain). However, these 3 isolates clustered together with the T. buffeli Indian isolate (EF126184). Present study confirmed the circulation of different genotypes of T. annulata in India, along with T. orientalis isolates.
    Matched MeSH terms: DNA, Protozoan/genetics
  12. Lau YL, Chang PY, Subramaniam V, Ng YH, Mahmud R, Ahmad AF, et al.
    Parasit Vectors, 2013 Sep 09;6(1):257.
    PMID: 24010903 DOI: 10.1186/1756-3305-6-257
    BACKGROUND: Sarcocystis species are protozoan parasites with a wide host range including snakes. Although there were several reports of Sarcocytis species in snakes, their distribution and prevalence are still not fully explored.

    METHODS: In this study, fecal specimens of several snake species in Malaysia were examined for the presence of Sarcocystis by PCR of 18S rDNA sequence. Microscopy examination of the fecal specimens for sporocysts was not carried as it was difficult to determine the species of the infecting Sarcocystis.

    RESULTS: Of the 28 snake fecal specimens, 7 were positive by PCR. BLASTn and phylogenetic analyses of the amplified 18S rDNA sequences revealed the snakes were infected with either S. nesbitti, S. singaporensis, S. zuoi or undefined Sarcocystis species.

    CONCLUSION: This study is the first to report Sarcocystis infection in a cobra, and S. nesbitti in a reticulated python.

    Matched MeSH terms: DNA, Protozoan/genetics
  13. Fong MY, Ahmed MA, Wong SS, Lau YL, Sitam F
    PLoS One, 2015;10(9):e0137734.
    PMID: 26379157 DOI: 10.1371/journal.pone.0137734
    Plasmodium knowlesi is a simian malaria parasite that has been identified to cause malaria in humans. To date, several thousand cases of human knowlesi malaria have been reported around Southeast Asia. Thus far, there is no detailed study on genetic diversity and natural selection of P. knowlesi circumsporozoite protein (CSP), a prominent surface antigen on the sporozoite of the parasite. In the present study, the genetic diversity and natural selection acting on the nonrepeat regions of the gene encoding P. knowlesi CSP were investigated, focusing on the T-cell epitope regions at the C-terminal of the protein.
    Matched MeSH terms: DNA, Protozoan/genetics
  14. Lee FCH, Muthu V
    Am J Trop Med Hyg, 2021 02 22;104(4):1388-1393.
    PMID: 33617472 DOI: 10.4269/ajtmh.20-0767
    Sarcocystosis outbreaks in Tioman and Pangkor islands of Malaysia between 2011 and 2014 have raised the need to improve Sarcocystis species detection from environmental samples. In-house works found that published primers amplifying the 18S rRNA gene of Sarcocystis either could not produce the target from environmental samples or produced Sarcocystis DNA sequence that was insufficient for species identification. Using the primer pair of 18S S5 F (published) and 28S R6 R (new), this study improved the PCR amplification of Sarcocystidae to overcome these two difficulties. The PCR product spanned from the 18S to 28S rRNA genes, providing more information for species identification. The long DNA sequence allowed comparison between the "Ident" and "Query Cover" sorting in GenBank identity matching. This revealed the ambiguity in identity matching caused by different lengths of reference DNA sequences, which is seldom discussed in the literature. Using the disparity index test, a measurement of homogeneity in nucleotide substitution pattern, it is shown that the internal transcribed spacer (ITS)1-5.8S-ITS2 and 28S genes are better than the 18S gene in indicating nucleotide variations, implying better potentials for species identification. The example given by the handful of Sarcocystidae long DNA sequences reported herein calls for the need to report DNA sequence from the 18S to the 28S rRNA genes for species identification, especially among emerging pathogens. DNA sequence reporting should include the hypervariable 5.8S and ITS2 regions where applicable, and not be limited to single gene, per the current general trend.
    Matched MeSH terms: DNA, Protozoan/genetics*
  15. Halim NA, Plutzer J, Bakheit MA, Karanis P
    Vet Parasitol, 2008 Apr 15;152(3-4):325-9.
    PMID: 18289793 DOI: 10.1016/j.vetpar.2007.12.035
    Fifty faecal samples from diarrheic calves between 1 and 6 months old were collected per rectum from 5 farms around Petaling District in Selangor, Malaysia for Cryptosporidium species detection and genotyping investigation. Oocysts were purified using sedimentation and gradient centrifugation, then examined by immunofluorescence assay (IFAT). Genomic DNA was extracted from all samples and nested PCR was performed to amplify the SSU rRNA gene. Eighteen samples (36%) were positive for Cryptosporidium species by PCR. The sequence and phylogenetic analysis of 14 isolates indicated that Cryptosporidium parvum was most common (11 isolates) followed by Cryptosporidium deer-like genotype (3 isolates). The present work reports the first data on Cryptosporidium genotyping from cattle in Malaysia.
    Matched MeSH terms: DNA, Protozoan/genetics
  16. Anuar TS, Al-Mekhlafi HM, Ghani MK, Azreen SN, Salleh FM, Ghazali N, et al.
    Parasitology, 2012 Oct;139(12):1521-5.
    PMID: 22939193 DOI: 10.1017/S0031182012001485
    Entamoeba moshkovskii and Entamoeba dispar are microscopically indistinguishable from the pathogenic species Entamoeba histolytica. Although sporadic cases of human infection with E. moshkovskii have been reported, the amoeba is still considered primarily as a free-living amoeba. A cross-sectional study was carried out among Orang Asli communities in 3 different states of Peninsular Malaysia. Fecal samples were examined by formalin-ether sedimentation and trichrome staining techniques and then single-round PCR assay was used to detect E. moshkovskii. Out of 500 fecal samples examined microscopically, 93 (18·6%) samples were positive for E. histolytica/E. dispar/E. moshkovskii complex cysts and/or trophozoites. PCR products were detected in 106 fecal samples. E. moshkovskii isolates were detected in 13 (12·3%) fecal samples. Of the 13 E. moshkovskii-positive samples, 5 were of single isolation of E. moshkovskii, 6 were also positive for E. dispar, and only 2 samples were positive for E. dispar and E. histolytica. Moreover, 3 E. moshkovskii-positive samples were collected from symptomatic individuals while the remaining 10 samples were from asymptomatic subjects. This is the first report on the identification of E. moshkovskii in Malaysia. Further studies are needed to confirm the pathogenicity of E. moshkovskii infection and determine the epidemiology among Orang Asli communities in Malaysia.
    Matched MeSH terms: DNA, Protozoan/genetics
  17. Lim YA, Mahdy MA, Tan TK, Goh XT, Jex AR, Nolan MJ, et al.
    Mol Cell Probes, 2013 Feb;27(1):28-31.
    PMID: 22971518 DOI: 10.1016/j.mcp.2012.08.006
    In the present study, 310 faecal samples from goats from eight different farms in Malaysia were tested for the presence of Giardia using a PCR-coupled approach. The nested PCR for SSU amplified products of the expected size (∼200 bp) from 21 of 310 (6.8%) samples. Sixteen of these 21 products could be sequenced successfully and represented six distinct sequence types. Phylogenetic analysis of the SSU sequence data using Bayesian Inference (BI) identified Giardia assemblages A, B and E. The identification of the 'zoonotic' assemblages A and B suggests that Giardia-infected goats represent a possible reservoir for human giardiasis in Malaysia.
    Matched MeSH terms: DNA, Protozoan/genetics*
  18. Alyousefi NA, Mahdy MA, Lim YA, Xiao L, Mahmud R
    Parasitology, 2013 May;140(6):729-34.
    PMID: 23369243 DOI: 10.1017/S0031182012001953
    Cryptosporidium is a protozoan parasite of humans and animals and has a worldwide distribution. The parasite has a unique epidemiology in Middle Eastern countries where the IId subtype family of Cryptosporidium parvum dominates. However, there has been no information on Cryptosporidium species in Yemen. Thus, this study was conducted in Yemen to examine the distribution of Cryptosporidium species and subtype families. Fecal samples were collected from 335 patients who attended hospitals in Sana'a city. Cryptosporidium species were determined by PCR and sequence analysis of the 18 s rRNA gene. Cryptosporidium parvum and C. hominis subtypes were identified based on sequence analysis of the 60 kDa glycoprotein (gp60) gene. Out of 335 samples, 33 (9.9%) were positive for Cryptosporidium. Of them, 97% were identified as C. parvum whilst 1 case (3%) was caused by C. hominis. All 7 C. parvum isolates subtyped belonged to the IIaA15G2R1 subtype. The common occurrence of the zoonotic IIa subtype family of C. parvum highlights the potential occurrence of zoonotic transmission of cryptosporidiosis in Yemen. However, this postulation needs confirmation with future molecular epidemiological studies of cryptosporidiosis in both humans and animals in Yemen.
    Matched MeSH terms: DNA, Protozoan/genetics
  19. Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM
    Malar J, 2014;13:68.
    PMID: 24564912 DOI: 10.1186/1475-2875-13-68
    Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans.The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods.Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax.This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax.Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria.The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization.
    Matched MeSH terms: DNA, Protozoan/genetics
  20. Tanizaki R, Ujiie M, Kato Y, Iwagami M, Hashimoto A, Kutsuna S, et al.
    Malar J, 2013;12:128.
    PMID: 23587117 DOI: 10.1186/1475-2875-12-128
    This is the first case of Plasmodium knowlesi infection in a Japanese traveller returning from Malaysia. In September 2012, a previously healthy 35-year-old Japanese man presented to National Center for Global Health and Medicine in Tokyo with a two-day history of daily fever, mild headaches and mild arthralgia. Malaria parasites were found in the Giemsa-stained thin blood smear, which showed band forms similar to Plasmodium malariae. Although a nested PCR showed the amplification of the primer of Plasmodium vivax and Plasmodium knowlesi, he was finally diagnosed with P. knowlesi mono-infection by DNA sequencing. He was treated with mefloquine, and recovered without any complications. DNA sequencing of the PCR products is indispensable to confirm P. knowlesi infection, however there is limited access to DNA sequencing procedures in endemic areas. The extent of P. knowlesi transmission in Asia has not been clearly defined. There is limited availability of diagnostic tests and routine surveillance system for reporting an accurate diagnosis in the Asian endemic regions. Thus, reporting accurately diagnosed cases of P. knowlesi infection in travellers would be important for assessing the true nature of this emerging human infection.
    Matched MeSH terms: DNA, Protozoan/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links