Displaying all 19 publications

Abstract:
Sort:
  1. Zahler M, Rinder H, Zweygarth E, Fukata T, Maede Y, Schein E, et al.
    Parasitology, 2000 Apr;120 ( Pt 4):365-9.
    PMID: 10811277
    18S rDNA sequences from 4 isolates of Babesia gibsoni originating from Japan, Malaysia and Sri Lanka were compared with a previously published, 0.5 kb portion of the 18S rDNA from a B. gibsoni isolate from California, USA, and with the corresponding 18S rDNA sequences of other Babesia spp. Distance, parsimony and maximum likelihood analyses showed almost identical genotypes among the small canine Babesia from Asia, but an unexpectedly distant genetic relationship to that from the USA. While the American isolate segregated together with B. equi, the Asian isolates showed a close relationship to B. divergens and B. odocoilei. These results indicate that small Babesia of dogs originating from North America and Asia belong to different, genetically distantly related species.
    Matched MeSH terms: RNA, Protozoan/genetics; RNA, Protozoan/chemistry
  2. Lau YL, Lai MY, Fong MY, Jelip J, Mahmud R
    Am J Trop Med Hyg, 2016 Feb;94(2):336-339.
    PMID: 26598573 DOI: 10.4269/ajtmh.15-0569
    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent.
    Matched MeSH terms: RNA, Protozoan/genetics
  3. Khoo A, Furuta T, Abdullah NR, Bah NA, Kojima S, Wah MJ
    Trans R Soc Trop Med Hyg, 1996 1 1;90(1):40-1.
    PMID: 8730308
    Matched MeSH terms: RNA, Protozoan/genetics*
  4. Kissinger JC, Collins WE, Li J, McCutchan TF
    J Parasitol, 1998 Apr;84(2):278-82.
    PMID: 9576499
    Plasmodium inui (Halberstaedter and von Prowazek, 1907), a malarial parasite of Old World monkeys that occurs in isolated pockets throughout the Celebes, Indonesia, Malaysia, and the Philippines, has traditionally been considered to be related more closely to Plasmodium malariae of humans (and its primate counterpart Plasmodium brasilianum), than to other primate Plasmodium species. This inference was made in part because of the similarities in the periodicities or duration of the asexual cycle in the blood, the extended sporogonic cycle, and the longer period of time for development of the pre-erythrocytic stages in the liver. Both P. inui and P. malariae have quartan (72 hr) periodicities associated with their asexual cycle, whereas other primate malarias, such as Plasmodium fragile and Plasmodium cynomolgi, are associated with tertian periodicities (48 hr), and Plasmodiumn knowlesi, with a quotidian (24 hr) periodicity. Phylogenetic analyses of portions of orthologous small subunit ribosomal genes reveal that P. inui is actually more closely related to the Plasmodium species of the "vivax-type" lineage than to P. malariae. Ribosomal sequence analysis of many different, geographically isolated, antigenically distinct P. inui isolates reveals that the isolates are nearly identical in sequence and thus members of the same species.
    Matched MeSH terms: RNA, Protozoan/genetics
  5. Kundave VR, Ram H, Shahzad M, Garg R, Banerjee PS, Nehra AK, et al.
    Infect Genet Evol, 2019 11;75:103962.
    PMID: 31302242 DOI: 10.1016/j.meegid.2019.103962
    Genetic characterization of Theileria species infecting bovines in India was attempted targeting the 18S ribosomal RNA region of the parasite. Blood samples of bovines (n = 452), suspected for haemoprotozoan infections, from 9 different states of the country were microscopically examined for Theileria species infection. Four Theileria spp. positive blood samples from each state were randomly utilized for PCR amplification of the 18S rRNA gene (approx. 1529 bp) followed by cloning and sequencing. The sequence data analysis of all the 36 isolates revealed that 33 isolates had high sequence similarity with published sequences of T. annulata, whereas 3 isolates (MF287917, MF287924 and MF287928) showed close similarity with published sequences of T. orientalis. Sequence homology within the isolates ranged between 95.8 and 100% and variation in the length of targeted region was also noticed in different isolates (1527-1538 nt). Phylogenetic tree created for T. annulata sequences revealed that a total of 24 Indian isolates formed a major clade and grouped together with isolates originating from countries like China, Spain, Turkey and USA. Remaining 09 isolates clustered in a separate group and were closely related to the TA5 isolate of T. annulata (a new genotype) originating from India and also with the isolates from East Asian countries like Japan and Malaysia. All the three T. orientalis isolates had minimal intraspecific variation (99-100% homology) amongst themselves. Further, in the phylogenetic analysis T. orientalis Indian isolates were found to cluster away from other 14 isolates of T. buffeli/sergenti/orientalis originating from different countries (Australia, China, Indonesia and Spain). However, these 3 isolates clustered together with the T. buffeli Indian isolate (EF126184). Present study confirmed the circulation of different genotypes of T. annulata in India, along with T. orientalis isolates.
    Matched MeSH terms: RNA, Protozoan/genetics
  6. Lokanathan Y, Mohd-Adnan A, Wan KL, Nathan S
    BMC Genomics, 2010;11:76.
    PMID: 20113487 DOI: 10.1186/1471-2164-11-76
    Cryptocaryon irritans is a parasitic ciliate that causes cryptocaryonosis (white spot disease) in marine fish. Diagnosis of cryptocaryonosis often depends on the appearance of white spots on the surface of the fish, which are usually visible only during later stages of the disease. Identifying suitable biomarkers of this parasite would aid the development of diagnostic tools and control strategies for C. irritans. The C. irritans genome is virtually unexplored; therefore, we generated and analyzed expressed sequence tags (ESTs) of the parasite to identify genes that encode for surface proteins, excretory/secretory proteins and repeat-containing proteins.
    Matched MeSH terms: RNA, Protozoan/genetics
  7. Mahdy AK, Surin J, Mohd-Adnan A, Wan KL, Lim YA
    Parasitology, 2009 Sep;136(11):1237-41.
    PMID: 19660153 DOI: 10.1017/S0031182009990527
    This study was conducted to determine the genotypes of Giardia duodenalis isolated from human faecal samples at Pos Betau, Pahang, Malaysia. Faecal specimens were collected and examined for G. duodenalis cysts using Trichrome staining techniques. Molecular identification was carried out by the amplification of a region of the small subunit of the nuclear ribosomal RNA (SSU rRNA) gene using nested PCR and subsequent sequencing. The sequences from 15 isolates from G. duodenalis were subjected to phylogenetic analysis (including appropriate outgroups) using the neighbor-joining and maximum parsimony methods. The trees identified G. duodenalis assemblages A and B, with a predominance of assemblage B. The predominance of anthroponotic genotypes indicates the possibility of anthroponotic transmission of these protozoa in this Semai Pahang Orang Asli community.
    Matched MeSH terms: RNA, Protozoan/genetics
  8. Lai MY, Ooi CH, Lau YL
    Malar J, 2021 Mar 25;20(1):166.
    PMID: 33766038 DOI: 10.1186/s12936-021-03707-0
    BACKGROUND: As an alternative to PCR methods, LAMP is increasingly being used in the field of molecular diagnostics. Under isothermal conditions at 65 °C, the entire procedure takes approximately 30 min to complete. In this study, we establish a sensitive and visualized LAMP method in a closed-tube system for the detection of Plasmodium knowlesi.

    METHODS: A total of 71 malaria microscopy positive blood samples collected in blood spots were obtained from the Sarawak State Health Department. Using 18s rRNA as the target gene, nested PCR and SYBR green I LAMP assay were performed following the DNA extraction. The colour changes of LAMP end products were observed by naked eyes.

    RESULTS: LAMP assay demonstrated a detection limit of 10 copies/µL in comparison with 100 copies/µL nested PCR. Of 71 P. knowlesi blood samples collected, LAMP detected 69 microscopy-positive samples. LAMP exhibited higher sensitivity than nested PCR assay. The SYBR green I LAMP assay was 97.1% sensitive (95% CI 90.2-99.7%) and 100% specific (95% CI 83.2-100%). Without opening the cap, incorporation of SYBR green I into the inner cap of the tube enabled the direct visualization of results upon completion of amplification. The positives instantaneously turned green while the negatives remained orange.

    CONCLUSIONS: These results indicate that SYBR green I LAMP assay is a convenient diagnosis tool for the detection of P. knowlesi in remote settings.

    Matched MeSH terms: RNA, Protozoan/analysis
  9. Richard RL, Ithoi I, Abd Majid MA, Wan Sulaiman WY, Tan TC, Nissapatorn V, et al.
    PMID: 27367710 DOI: 10.3390/ijerph13070641
    The occurrence of waterborne parasites coupled with water parameters at various processing sites of two drinking water treatment plants (A and B) and seven distribution system (DS) sites in Sarawak, Malaysia were studied. Ten liters of water underwent immunomagnetic separation (IMS) technique to detect the presence of Giardia and Cryptosporidium (oo)cysts. The remaining supernatant was used to detect other parasites whilst 50 mL of water sample was each used in the detection of free-living amoebae and fecal coliforms. Sampled water was positive for Giardia (32.9%; 28/85), Cryptosporidium (18.8%; 16/85) followed by Spirometra ova-like (25.9%; 22/85), Blastocystis-like (25.9%; 22/85), nematode larvae-like (8.2%; 7/85) and Taenia ova-like (1.2%; 1/85). Meanwhile, 90.2% (55/61) samples were positive for Acanthamoeba and Naegleria via cultivation and of these, 11 isolates were confirmed as Acanthamoeba genotype T3 (5/7) and T4 (2/7) followed by Naegleria sp. (4/11), Naegleria italica (2/11), Naegleria australiensis (1/11), Naegleria angularis (1/11) and Vahlkampfia sp. (3/11). Cryptosporidium, Acanthamoeba and Naegleria were also detected in one of the seven tested DS sites. Only Giardia and Cryptosporidium showed significant correlations with fluoride and fecal coliforms. These results describe the occurrence of waterborne parasites that will assist key stakeholders in mitigating contamination at the specific sites.
    Matched MeSH terms: RNA, Protozoan/analysis
  10. Ngui R, Angal L, Fakhrurrazi SA, Lian YL, Ling LY, Ibrahim J, et al.
    Parasit Vectors, 2012;5:187.
    PMID: 22947430
    In this study, a total of 426 human faecal samples were examined for the presence of Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii infection via a combination of microscopic examination and nested polymerase chain reaction (PCR) targeting 16S ribosomal RNA of Entamoeba species.
    Matched MeSH terms: RNA, Protozoan/genetics
  11. Székely C, Shaharom F, Cech G, Mohamed K, Zin NA, Borkhanuddin MH, et al.
    Parasitol Res, 2012 Oct;111(4):1749-56.
    PMID: 22782473
    Tor tambroides, a common and appreciated cyprinid fish of the Tasik Kenyir water reservoir in Malaysia, is one of the species selected for propagation. This fish was first successfully propagated in Malaysia by the Department of Agriculture, Sarawak, Malaysia, and the breeding program continued throughout the country. The gills were frequently infected by a Myxobolus species to be described as Myxobolus tambroides sp. n. The small, 50 to 70 μm, round plasmodia of this species is located intralamellarly. Plasmodia were filled with pyriform myxospores, 9.9 and 7.4 μm wide. In sutural view, the caudal end of the myxospores had a distinctive valvular groove, parallel with the suture. Plasmodia caused deformations on the affected and the neighbouring gill lamellae. The 18S rDNA sequence of M. tambroides sp.n. did not show a close relationship with any other Myxobolus spp., represented in the GenBank. This might be an emerging parasite likely to impact the propagation of this fish.
    Matched MeSH terms: RNA, Protozoan/genetics
  12. Freeman MA, Shinn AP
    Parasit Vectors, 2011;4:220.
    PMID: 22115202 DOI: 10.1186/1756-3305-4-220
    Myxosporeans are known from aquatic annelids but parasitism of platyhelminths by myxosporeans has not been widely reported. Hyperparasitism of gill monogeneans by Myxidium giardi has been reported from the European eel and Myxidium-like hyperparasites have also been observed during studies of gill monogeneans from Malaysia and Japan.The present study aimed to collect new hyperparasite material from Malaysia for morphological and molecular descriptions. In addition, PCR screening of host fish was undertaken to determine whether they are also hosts for the myxosporean.
    Matched MeSH terms: RNA, Protozoan/genetics
  13. Freeman MA, Eydal M, Yoshimizu M, Watanabe K, Shinn AP, Miura K, et al.
    Parasit Vectors, 2011;4:15.
    PMID: 21299903 DOI: 10.1186/1756-3305-4-15
    Epidermal pseudotumours from Hippoglossoides dubius and Acanthogobius flavimanus in Japan and gill lesions in Limanda limanda from the UK have been shown to be caused by phylogenetically related protozoan parasites, known collectively as X-cells. However, the phylogenetic position of the X-cell group is not well supported within any of the existing protozoan phyla and they are currently thought to be members of the Alveolata.Ultrastructural features of X-cells in fish pseudotumours are somewhat limited and no typical environmental stages, such as spores or flagellated cells, have been observed. The life cycles for these parasites have not been demonstrated and it remains unknown how transmission to a new host occurs. In the present study, pseudobranchial pseudotumours from Atlantic cod, Gadus morhua, in Iceland and epidermal pseudotumours from the northern black flounder, Pseudopleuronectes obscurus, in Japan were used in experimental transmission studies to establish whether direct transmission of the parasite is achievable. In addition, X-cells from Atlantic cod were sequenced to confirm whether they are phylogenetically related to other X-cells and epidermal pseudotumours from the northern black flounder were analysed to establish whether the same parasite is responsible for infecting different flatfish species in Japan.
    Matched MeSH terms: RNA, Protozoan/genetics
  14. Lim YA, Ramasame SD, Mahdy MA, Sulaiman WY, Smith HV
    Parasitol Res, 2009 Dec;106(1):289-91.
    PMID: 19705155 DOI: 10.1007/s00436-009-1602-y
    Nine 50-l surface water samples from a Malaysian recreational lake were examined microscopically using an immunomagnetisable separation-immunofluorescent method. No Cryptosporidium oocysts were detected, but 77.8% of samples contained low numbers of Giardia cysts (range, 0.17-1.1 cysts/l), which were genetically characterised by SSU rRNA gene sequencing. Genotype analyses indicated the presence of Giardia duodenalis assemblage A suggesting potential risk to public health. The present study represents the first contribution to our knowledge of G. duodenalis assemblages in Malaysian recreational water.
    Matched MeSH terms: RNA, Protozoan/genetics
  15. Horn M, Fritsche TR, Linner T, Gautom RK, Harzenetter MD, Wagner M
    Int J Syst Evol Microbiol, 2002 Mar;52(Pt 2):599-605.
    PMID: 11931173 DOI: 10.1099/00207713-52-2-599
    All obligate bacterial endosymbionts of free-living amoebae currently described are affiliated with the alpha-Proteobacteria, the Chlamydiales or the phylum Cytophaga-Flavobacterium-Bacteroides. Here, six rod-shaped gram-negative obligate bacterial endosymbionts of clinical and environmental isolates of Acanthamoeba spp. from the USA and Malaysia are reported. Comparative 16S rDNA sequence analysis demonstrated that these endosymbionts form a novel, monophyletic lineage within the beta-Proteobacteria, showing less than 90% sequence similarity to all other recognized members of this subclass. 23S rDNA sequence analysis of two symbionts confirmed this affiliation and revealed the presence of uncommon putative intervening sequences of 146 bp within helix-25 that shared no sequence homology to any other bacterial rDNA. In addition, the 23S rRNA of these endosymbionts displayed one polymorphism at the target site of oligonucleotide probe BET42a that is conserved in all other sequenced beta-Proteobacteria. Intra-cytoplasmatic localization of the endosymbionts within the amoebal host cells was confirmed by electron microscopy and fluorescence in situ hybridization with a specific 16S rRNA-targeted oligonucleotide probe. Based on these findings, the provisional name 'Candidatus Procabacter acanthamoebae' is proposed for classification of a representative of the six endosymbionts of Acanthamoeba spp. studied in this report. Comparative 18S rDNA sequence analysis of the Acanthamoeba host cells revealed their membership with either Acanthamoeba 18S rDNA sequence type T5 (Acanthamoeba lenticulata) or sequence type T4, which comprises the majority of all Acanthamoeba isolates.
    Matched MeSH terms: RNA, Protozoan/genetics
  16. Chan LL, Mak JW, Low YT, Koh TT, Ithoi I, Mohamed SM
    Acta Trop, 2011 Jan;117(1):23-30.
    PMID: 20858455 DOI: 10.1016/j.actatropica.2010.09.004
    During a study on the quality of the indoor environment, Acanthamoeba spp. were detected in 20 out of 87 dust samples collected from air-conditioners installed in a four-story campus building located in Kuala Lumpur, Malaysia. Twenty-one cloned Acanthamoeba isolates designated as IMU1 to IMU21 were established from the positive primary cultures. Five species were identified from the 16 isolates according to the morphological criteria of Pussard and Pons; i.e. A. castellanii, A. culbertsoni, A. griffini, A. hatchetti and A. polyphaga. Species identities for the remaining five isolates (IMU4, IMU5, IMU15, IMU20 and IMU21), however, could not be determined morphologically. At genotypic characterization, these isolates were placed into T3 (IMU14); T5 (IMU16 and IMU17) and T4 (all the remaining isolates). To predict the potential pathogenicity of these Acanthamoeba isolates, thermo- and osmotolerance tests were employed; many isolates were predicted as potential human pathogens based on the outcome of these tests. This is the first time potentially pathogenic Acanthamoeba have been isolated from air-conditioners in Malaysia.
    Matched MeSH terms: RNA, Protozoan/genetics
  17. Latif B, Vellayan S, Heo CC, Kannan Kutty M, Omar E, Abdullah S, et al.
    Trop Biomed, 2013 Dec;30(4):699-705.
    PMID: 24522140 MyJurnal
    The prevalence of sarcocystosis in cattle and water buffaloes from peninsular Malaysia was investigated in abattoirs in Selangor state, February, 2011, to March, 2012. Fresh muscle samples were collected from the tongue, heart, oesophagus, diaphragm and skeletal muscles of 102 cattle and 18 water buffaloes. Each sample was initially screened by light microscopy and then fixed for further histopathological analysis. Out of 120 animals examined, 49 (40.8%) harboured the microscopic type of Sarcocystis spp. The positivity rate for cattle was 36.2% and for water buffaloes 66.7%. In cattle, the organs highly infected were the skeletal muscles and diaphragm (27% each), followed by tongue and esophagus (24.3% each), and the heart (8%). In water buffaloes, the heart was most often infected (66.7%), followed by the oesophagus (50%) and skeletal muscle (33.3%); no sarcocysts were detected in the tongue and diaphragm. The shape of the sarcocyst was fusiform to oval with a mean cyst size of 151.66 x 75.83 μm and wall thickness of 2.47 μm in cattle, and 114 x 50.81 μm cyst size and the wall thickness of 1.11 μm in water buffaloes, consistent with Sarcocystis cruzi and Sarcocystis levinei, respectively. Remaining tissue from cattle was subjected to parasite specific 18S rRNA gene PCR and Sarcocystis cruzi was confirmed, at least exemplarily. The peripheral metrocytes and the banana-shaped bradyzoites (15.23 x 2.2 μm in cattle and 11.49 x 2.45 μm in water buffalo hosts) were easily recognized. In conclusion, a high positivity rate was found in Malaysian meat-producing animals with possible implications for meat consumption and human health.
    Matched MeSH terms: RNA, Protozoan/genetics
  18. Chua TH, Manin BO, Daim S, Vythilingam I, Drakeley C
    PLoS Negl Trop Dis, 2017 Oct;11(10):e0005991.
    PMID: 28968395 DOI: 10.1371/journal.pntd.0005991
    BACKGROUND: Anopheles balabacensis of the Leucospyrus group has been confirmed as the primary knowlesi malaria vector in Sabah, Malaysian Borneo for some time now. Presently, knowlesi malaria is the only zoonotic simian malaria in Malaysia with a high prevalence recorded in the states of Sabah and Sarawak.

    METHODOLOGY/PRINCIPAL FINDINGS: Anopheles spp. were sampled using human landing catch (HLC) method at Paradason village in Kudat district of Sabah. The collected Anopheles were identified morphologically and then subjected to total DNA extraction and polymerase chain reaction (PCR) to detect Plasmodium parasites in the mosquitoes. Identification of Plasmodium spp. was confirmed by sequencing the SSU rRNA gene with species specific primers. MEGA4 software was then used to analyse the SSU rRNA sequences and bulid the phylogenetic tree for inferring the relationship between simian malaria parasites in Sabah. PCR results showed that only 1.61% (23/1,425) of the screened An. balabacensis were infected with one or two of the five simian Plasmodium spp. found in Sabah, viz. Plasmodium coatneyi, P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Sequence analysis of SSU rRNA of Plasmodium isolates showed high percentage of identity within the same Plasmodium sp. group. The phylogenetic tree based on the consensus sequences of P. knowlesi showed 99.7%-100.0% nucleotide identity among the isolates from An. balabacensis, human patients and a long-tailed macaque from the same locality.

    CONCLUSIONS/SIGNIFICANCE: This is the first study showing high molecular identity between the P. knowlesi isolates from An. balabacensis, human patients and a long-tailed macaque in Sabah. The other common simian Plasmodium spp. found in long-tailed macaques and also detected in An. balabacensis were P. coatneyi, P. inui, P. fieldi and P. cynomolgi. The high percentage identity of nucleotide sequences between the P. knowlesi isolates from the long-tailed macaque, An. balabacensis and human patients suggests a close genetic relationship between the parasites from these hosts.

    Matched MeSH terms: RNA, Protozoan/genetics
  19. Alyousefi NA, Mahdy MA, Lim YA, Xiao L, Mahmud R
    Parasitology, 2013 May;140(6):729-34.
    PMID: 23369243 DOI: 10.1017/S0031182012001953
    Cryptosporidium is a protozoan parasite of humans and animals and has a worldwide distribution. The parasite has a unique epidemiology in Middle Eastern countries where the IId subtype family of Cryptosporidium parvum dominates. However, there has been no information on Cryptosporidium species in Yemen. Thus, this study was conducted in Yemen to examine the distribution of Cryptosporidium species and subtype families. Fecal samples were collected from 335 patients who attended hospitals in Sana'a city. Cryptosporidium species were determined by PCR and sequence analysis of the 18 s rRNA gene. Cryptosporidium parvum and C. hominis subtypes were identified based on sequence analysis of the 60 kDa glycoprotein (gp60) gene. Out of 335 samples, 33 (9.9%) were positive for Cryptosporidium. Of them, 97% were identified as C. parvum whilst 1 case (3%) was caused by C. hominis. All 7 C. parvum isolates subtyped belonged to the IIaA15G2R1 subtype. The common occurrence of the zoonotic IIa subtype family of C. parvum highlights the potential occurrence of zoonotic transmission of cryptosporidiosis in Yemen. However, this postulation needs confirmation with future molecular epidemiological studies of cryptosporidiosis in both humans and animals in Yemen.
    Matched MeSH terms: RNA, Protozoan/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links