Displaying publications 41 - 60 of 104 in total

Abstract:
Sort:
  1. Zhang C, Gao Y, Ning Z, Lu Y, Zhang X, Liu J, et al.
    Genome Biol, 2019 10 22;20(1):215.
    PMID: 31640808 DOI: 10.1186/s13059-019-1838-5
    Despite the tremendous growth of the DNA sequencing data in the last decade, our understanding of the human genome is still in its infancy. To understand the implications of genetic variants in the light of population genetics and molecular evolution, we developed a database, PGG.SNV ( https://www.pggsnv.org ), which gives much higher weight to previously under-investigated indigenous populations in Asia. PGG.SNV archives 265 million SNVs across 220,147 present-day genomes and 1018 ancient genomes, including 1009 newly sequenced genomes, representing 977 global populations. Moreover, estimation of population genetic diversity and evolutionary parameters is available in PGG.SNV, a unique feature compared with other databases.
    Matched MeSH terms: Databases, Genetic*
  2. Tan SY, Dutta A, Jakubovics NS, Ang MY, Siow CC, Mutha NV, et al.
    BMC Bioinformatics, 2015;16:9.
    PMID: 25591325 DOI: 10.1186/s12859-014-0422-y
    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity.
    Matched MeSH terms: Databases, Genetic*
  3. Shabaruddin FH, Fleeman ND, Payne K
    Pharmgenomics Pers Med, 2015;8:115-26.
    PMID: 26309416 DOI: 10.2147/PGPM.S35063
    Personalized medicine, with the aim of safely, effectively, and cost-effectively targeting treatment to a prespecified patient population, has always been a long-time goal within health care. It is often argued that personalizing treatment will inevitably improve clinical outcomes for patients and help achieve more effective use of health care resources. Demand is increasing for demonstrable evidence of clinical and cost-effectiveness to support the use of personalized medicine in health care. This paper begins with an overview of the existing challenges in conducting economic evaluations of genetics- and genomics-targeted technologies, as an example of personalized medicine. Our paper illustrates the complexity of the challenges faced by these technologies by highlighting the variations in the issues faced by diagnostic tests for somatic variations, generally referring to genetic variation in a tumor, and germline variations, generally referring to inherited genetic variation in enzymes involved in drug metabolic pathways. These tests are typically aimed at stratifying patient populations into subgroups on the basis of clinical effectiveness (response) or safety (avoidance of adverse events). The paper summarizes the data requirements for economic evaluations of genetics and genomics-based technologies while outlining that the main challenges relating to data requirements revolve around the availability and quality of existing data. We conclude by discussing current developments aimed to address the challenges of assessing the cost-effectiveness of genetics and genomics-based technologies, which revolve around two central issues that are interlinked: the need to adapt available evaluation methods and identifying who is responsible for generating evidence for these technologies.
    Matched MeSH terms: Databases, Genetic
  4. Rebbeck TR, Friebel TM, Friedman E, Hamann U, Huo D, Kwong A, et al.
    Hum Mutat, 2018 05;39(5):593-620.
    PMID: 29446198 DOI: 10.1002/humu.23406
    The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on White in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on six continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, mutations of relatively high frequency were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations.
    Matched MeSH terms: Databases, Genetic
  5. Heckenhauer J, Abu Salim K, Chase MW, Dexter KG, Pennington RT, Tan S, et al.
    PLoS One, 2017;12(10):e0185861.
    PMID: 29049301 DOI: 10.1371/journal.pone.0185861
    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses.
    Matched MeSH terms: Databases, Genetic
  6. Feng B, Wang XH, Ratkowsky D, Gates G, Lee SS, Grebenc T, et al.
    Sci Rep, 2016 May 06;6:25586.
    PMID: 27151256 DOI: 10.1038/srep25586
    Hydnum is a fungal genus proposed by Linnaeus in the early time of modern taxonomy. It contains several ectomycorrhizal species which are commonly consumed worldwide. However, Hydnum is one of the most understudied fungal genera, especially from a molecular phylogenetic view. In this study, we extensively gathered specimens of Hydnum from Asia, Europe, America and Australasia, and analyzed them by using sequences of four gene fragments (ITS, nrLSU, tef1α and rpb1). Our phylogenetic analyses recognized at least 31 phylogenetic species within Hydnum, 15 of which were reported for the first time. Most Australasian species were recognized as strongly divergent old relics, but recent migration between Australasia and the Northern Hemisphere was also detected. Within the Northern Hemisphere, frequent historical biota exchanges between the Old World and the New World via both the North Atlantic Land Bridge and the Bering Land Bridge could be elucidated. Our study also revealed that most Hydnum species found in subalpine areas of the Hengduan Mountains in southwestern China occur in northeastern/northern China and Europe, indicating that the composition of the mycobiota in the Hengduan Mountains reigion is more complicated than what we have known before.
    Matched MeSH terms: Databases, Genetic
  7. Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, et al.
    J Natl Cancer Inst, 2020 Oct 01;112(10):1003-1012.
    PMID: 31917448 DOI: 10.1093/jnci/djz246
    BACKGROUND: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown.

    METHODS: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples).

    RESULTS: We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction.

    CONCLUSIONS: By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.

    Matched MeSH terms: Databases, Genetic
  8. Zhang H, Mo Y, Wang L, Zhang H, Wu S, Sandai D, et al.
    Front Immunol, 2024;15:1339647.
    PMID: 38660311 DOI: 10.3389/fimmu.2024.1339647
    INTRODUCTION: Over the past decades, immune dysregulation has been consistently demonstrated being common charactoristics of endometriosis (EM) and Inflammatory Bowel Disease (IBD) in numerous studies. However, the underlying pathological mechanisms remain unknown. In this study, bioinformatics techniques were used to screen large-scale gene expression data for plausible correlations at the molecular level in order to identify common pathogenic pathways between EM and IBD.

    METHODS: Based on the EM transcriptomic datasets GSE7305 and GSE23339, as well as the IBD transcriptomic datasets GSE87466 and GSE126124, differential gene analysis was performed using the limma package in the R environment. Co-expressed differentially expressed genes were identified, and a protein-protein interaction (PPI) network for the differentially expressed genes was constructed using the 11.5 version of the STRING database. The MCODE tool in Cytoscape facilitated filtering out protein interaction subnetworks. Key genes in the PPI network were identified through two topological analysis algorithms (MCC and Degree) from the CytoHubba plugin. Upset was used for visualization of these key genes. The diagnostic value of gene expression levels for these key genes was assessed using the Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) The CIBERSORT algorithm determined the infiltration status of 22 immune cell subtypes, exploring differences between EM and IBD patients in both control and disease groups. Finally, different gene expression trends shared by EM and IBD were input into CMap to identify small molecule compounds with potential therapeutic effects.

    RESULTS: 113 differentially expressed genes (DEGs) that were co-expressed in EM and IBD have been identified, comprising 28 down-regulated genes and 86 up-regulated genes. The co-expression differential gene of EM and IBD in the functional enrichment analyses focused on immune response activation, circulating immunoglobulin-mediated humoral immune response and humoral immune response. Five hub genes (SERPING1、VCAM1、CLU、C3、CD55) were identified through the Protein-protein Interaction network and MCODE.High Area Under the Curve (AUC) values of Receiver Operating Characteristic (ROC) curves for 5hub genes indicate the predictive ability for disease occurrence.These hub genes could be used as potential biomarkers for the development of EM and IBD. Furthermore, the CMap database identified a total of 9 small molecule compounds (TTNPB、CAY-10577、PD-0325901 etc.) targeting therapeutic genes for EM and IBD.

    DISCUSSION: Our research revealed common pathogenic mechanisms between EM and IBD, particularly emphasizing immune regulation and cell signalling, indicating the significance of immune factors in the occurence and progression of both diseases. By elucidating shared mechanisms, our study provides novel avenues for the prevention and treatment of EM and IBD.

    Matched MeSH terms: Databases, Genetic
  9. Yahya P, Sulong S, Harun A, Wangkumhang P, Wilantho A, Ngamphiw C, et al.
    Int J Legal Med, 2020 Jan;134(1):123-134.
    PMID: 31760471 DOI: 10.1007/s00414-019-02184-0
    Ancestry-informative markers (AIMs) can be used to infer the ancestry of an individual to minimize the inaccuracy of self-reported ethnicity in biomedical research. In this study, we describe three methods for selecting AIM SNPs for the Malay population (Malay AIM panel) using different approaches based on pairwise FST, informativeness for assignment (In), and PCA-correlated SNPs (PCAIMs). These Malay AIM panels were extracted from genotype data stored in SNP arrays hosted by the Malaysian node of the Human Variome Project (MyHVP) and the Singapore Genome Variation Project (SGVP). In particular, genotype data from a total of 165 Malay individuals were analyzed, comprising data on 117 individual genotypes from the Affymetrix SNP-6 SNP array platform and data on 48 individual genotypes from the OMNI 2.5 Illumina SNP array platform. The HapMap phase 3 database (1397 individuals from 11 populations) was used as a reference for comparison with the Malay genotype data. The accuracy of each resulting Malay AIM panel was evaluated using a machine learning "ancestry-predictive model" constructed by using WEKA, a comprehensive machine learning platform written in Java. A total of 1250 SNPs were finally selected, which successfully identified Malay individuals from other world populations with an accuracy of 90%, but the accuracy decreased to 80% using 157 SNPs according to the pairwise FST method, while a panel of 200 SNPs selected using In and PCAIMs could be used to identify Malay individuals with an accuracy of approximately 80%.
    Matched MeSH terms: Databases, Genetic*
  10. Teo YY, Sim X, Ong RT, Tan AK, Chen J, Tantoso E, et al.
    Genome Res, 2009 Nov;19(11):2154-62.
    PMID: 19700652 DOI: 10.1101/gr.095000.109
    The Singapore Genome Variation Project (SGVP) provides a publicly available resource of 1.6 million single nucleotide polymorphisms (SNPs) genotyped in 268 individuals from the Chinese, Malay, and Indian population groups in Southeast Asia. This online database catalogs information and summaries on genotype and phased haplotype data, including allele frequencies, assessment of linkage disequilibrium (LD), and recombination rates in a format similar to the International HapMap Project. Here, we introduce this resource and describe the analysis of human genomic variation upon agglomerating data from the HapMap and the Human Genome Diversity Project, providing useful insights into the population structure of the three major population groups in Asia. In addition, this resource also surveyed across the genome for variation in regional patterns of LD between the HapMap and SGVP populations, and for signatures of positive natural selection using two well-established metrics: iHS and XP-EHH. The raw and processed genetic data, together with all population genetic summaries, are publicly available for download and browsing through a web browser modeled with the Generic Genome Browser.
    Matched MeSH terms: Databases, Genetic*
  11. Low JZB, Khang TF, Tammi MT
    BMC Bioinformatics, 2017 12 28;18(Suppl 16):575.
    PMID: 29297307 DOI: 10.1186/s12859-017-1974-4
    BACKGROUND: In current statistical methods for calling differentially expressed genes in RNA-Seq experiments, the assumption is that an adjusted observed gene count represents an unknown true gene count. This adjustment usually consists of a normalization step to account for heterogeneous sample library sizes, and then the resulting normalized gene counts are used as input for parametric or non-parametric differential gene expression tests. A distribution of true gene counts, each with a different probability, can result in the same observed gene count. Importantly, sequencing coverage information is currently not explicitly incorporated into any of the statistical models used for RNA-Seq analysis.

    RESULTS: We developed a fast Bayesian method which uses the sequencing coverage information determined from the concentration of an RNA sample to estimate the posterior distribution of a true gene count. Our method has better or comparable performance compared to NOISeq and GFOLD, according to the results from simulations and experiments with real unreplicated data. We incorporated a previously unused sequencing coverage parameter into a procedure for differential gene expression analysis with RNA-Seq data.

    CONCLUSIONS: Our results suggest that our method can be used to overcome analytical bottlenecks in experiments with limited number of replicates and low sequencing coverage. The method is implemented in CORNAS (Coverage-dependent RNA-Seq), and is available at https://github.com/joel-lzb/CORNAS .

    Matched MeSH terms: Databases, Genetic*
  12. Chen J, Teo YY, Toh DS, Sung C
    Pharmacogenomics, 2010 Aug;11(8):1077-94.
    PMID: 20712526 DOI: 10.2217/pgs.10.79
    The frequencies of alleles implicated in drug-response variability provide vital information for public health management. Differences in frequencies between genetically diverse groups of individuals can hamper drug assessments, particularly in populations where clinical data are not readily available.
    Matched MeSH terms: Databases, Genetic*
  13. Sivadas A, Salleh MZ, Teh LK, Scaria V
    Pharmacogenomics J, 2017 10;17(5):461-470.
    PMID: 27241059 DOI: 10.1038/tpj.2016.39
    Expanding the scope of pharmacogenomic research by including multiple global populations is integral to building robust evidence for its clinical translation. Deep whole-genome sequencing of diverse ethnic populations provides a unique opportunity to study rare and common pharmacogenomic markers that often vary in frequency across populations. In this study, we aim to build a diverse map of pharmacogenetic variants in South East Asian (SEA) Malay population using deep whole-genome sequences of 100 healthy SEA Malay individuals. We investigated the allelic diversity of potentially deleterious pharmacogenomic variants in SEA Malay population. Our analysis revealed 227 common and 466 rare potentially functional single nucleotide variants (SNVs) in 437 pharmacogenomic genes involved in drug metabolism, transport and target genes, including 74 novel variants. This study has created one of the most comprehensive maps of pharmacogenetic markers in any population from whole genomes and will hugely benefit pharmacogenomic investigations and drug dosage recommendations in SEA Malays.
    Matched MeSH terms: Databases, Genetic
  14. Choo SW, Ang MY, Dutta A, Tan SY, Siow CC, Heydari H, et al.
    Sci Rep, 2015 Dec 15;5:18227.
    PMID: 26666970 DOI: 10.1038/srep18227
    Mycobacterium spp. are renowned for being the causative agent of diseases like leprosy, Buruli ulcer and tuberculosis in human beings. With more and more mycobacterial genomes being sequenced, any knowledge generated from comparative genomic analysis would provide better insights into the biology, evolution, phylogeny and pathogenicity of this genus, thus helping in better management of diseases caused by Mycobacterium spp.With this motivation, we constructed MycoCAP, a new comparative analysis platform dedicated to the important genus Mycobacterium. This platform currently provides information of 2108 genome sequences of at least 55 Mycobacterium spp. A number of intuitive web-based tools have been integrated in MycoCAP particularly for comparative analysis including the PGC tool for comparison between two genomes, PathoProT for comparing the virulence genes among the Mycobacterium strains and the SuperClassification tool for the phylogenic classification of the Mycobacterium strains and a specialized classification system for strains of Mycobacterium abscessus. We hope the broad range of functions and easy-to-use tools provided in MycoCAP makes it an invaluable analysis platform to speed up the research discovery on mycobacteria for researchers. Database URL: http://mycobacterium.um.edu.my.
    Matched MeSH terms: Databases, Genetic
  15. Wei K, Sutherland H, Camilleri E, Haupt LM, Griffiths LR, Gan SH
    Mol Biol Rep, 2014 Dec;41(12):8285-92.
    PMID: 25213548 DOI: 10.1007/s11033-014-3729-x
    Computational epigenetics is a new area of research focused on exploring how DNA methylation patterns affect transcription factor binding that affect gene expression patterns. The aim of this study was to produce a new protocol for the detection of DNA methylation patterns using computational analysis which can be further confirmed by bisulfite PCR with serial pyrosequencing. The upstream regulatory element and pre-initiation complex relative to CpG islets within the methylenetetrahydrofolate reductase gene were determined via computational analysis and online databases. The 1,104 bp long CpG island located near to or at the alternative promoter site of methylenetetrahydrofolate reductase gene was identified. The CpG plot indicated that CpG islets A and B, within the island, contained 62 and 75 % GC content CpG ratios of 0.70 and 0.80-0.95, respectively. Further exploration of the CpG islets A and B indicates that the transcription start sites were GGC which were absent from the TATA boxes. In addition, although six PROSITE motifs were identified in CpG B, no motifs were detected in CpG A. A number of cis-regulatory elements were found in different regions within the CpGs A and B. Transcription factors were predicted to bind to CpGs A and B with varying affinities depending on the DNA methylation status. In addition, transcription factor binding may influence the expression patterns of the methylenetetrahydrofolate reductase gene by recruiting chromatin condensation inducing factors. These results have significant implications for the understanding of the architecture of transcription factor binding at CpG islets as well as DNA methylation patterns that affect chromatin structure.
    Matched MeSH terms: Databases, Genetic
  16. Seman A, Bakar ZA, Isa MN
    BMC Res Notes, 2012;5:557.
    PMID: 23039132 DOI: 10.1186/1756-0500-5-557
    Y-Short Tandem Repeats (Y-STR) data consist of many similar and almost similar objects. This characteristic of Y-STR data causes two problems with partitioning: non-unique centroids and local minima problems. As a result, the existing partitioning algorithms produce poor clustering results.
    Matched MeSH terms: Databases, Genetic
  17. Ong SY, Ng FL, Badai SS, Yuryev A, Alam M
    J Integr Bioinform, 2010;7(1).
    PMID: 20861532 DOI: 10.2390/biecoll-jib-2010-145
    Signal transduction through protein-protein interactions and protein modifications are the main mechanisms controlling many biological processes. Here we described the implementation of MedScan information extraction technology and Pathway Studio software (Ariadne Genomics Inc.) to create a Salmonella specific molecular interaction database. Using the database, we have constructed several signal transduction pathways in Salmonella enterica serovar Typhi which causes Typhoid Fever, a major health threat especially in developing countries. S. Typhi has several pathogenicity islands that control rapid switching between different phenotypes including adhesion and colonization, invasion, intracellular survival, proliferation, and biofilm formation in response to environmental changes. Understanding of the detailed mechanism for S. Typhi survival in host cells is necessary for development of efficient detection and treatment of this pathogen. The constructed pathways were validated using publically available gene expression microarray data for Salmonella.
    Matched MeSH terms: Databases, Genetic
  18. Ho CL, Kwan YY, Choi MC, Tee SS, Ng WH, Lim KA, et al.
    BMC Genomics, 2007;8:381.
    PMID: 17953740
    Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm.
    Matched MeSH terms: Databases, Genetic
  19. Chong CE, Lim BS, Nathan S, Mohamed R
    In Silico Biol. (Gedrukt), 2006;6(4):341-6.
    PMID: 16922696
    Recent advances in DNA sequencing technology have enabled elucidation of whole genome information from a plethora of organisms. In parallel with this technology, various bioinformatics tools have driven the comparative analysis of the genome sequences between species and within isolates. While drawing meaningful conclusions from a large amount of raw material, computer-aided identification of suitable targets for further experimental analysis and characterization, has also led to the prediction of non-human homologous essential genes in bacteria as promising candidates for novel drug discovery. Here, we present a comparative genomic analysis to identify essential genes in Burkholderia pseudomallei. Our in silico prediction has identified 312 essential genes which could also be potential drug candidates. These genes encode essential proteins to support the survival of B. pseudomallei including outer-inner membrane and surface structures, regulators, proteins involved in pathogenenicity, adaptation, chaperones as well as degradation of small and macromolecules, energy metabolism, information transfer, central/intermediate/miscellaneous metabolism pathways and some conserved hypothetical proteins of unknown function. Therefore, our in silico approach has enabled rapid screening and identification of potential drug targets for further characterization in the laboratory.
    Matched MeSH terms: Databases, Genetic
  20. Nurfadhlina M, Foong K, Teh LK, Tan SC, Mohd Zaki S, Ismail R
    Xenobiotica, 2006 Aug;36(8):684-92.
    PMID: 16891249
    The genetically polymorphic cytochrome P450 (CYP) 2A6 is the major nicotine-oxidase in humans that may contribute to nicotine dependence and cancer susceptibility. The authors investigated the types and frequencies of CYP2A6 alleles in the three major ethnic groups in Malaysia and CYP2A6*1A, CYP2A6*1B, CYP2A6*1x2, CYP2A6*2, CYP2A6*3, CYP2A6*4, CYP2A6*5, CYP2A6*7, CYP2A6*8 and CYP2A6*10 were determined by allele-specific polymerase chain reaction (PCR) in 270 Malays, 172 Chinese and 174 Indians. Except for CYP2A6*2 and *3 that were not detected in the Malays and Chinese, all the other alleles were detected. Frequencies for the CYP2A6*4 allele were 7, 5 and 2%, respectively, in Malays, Chinese and Indians. A statistically significant high frequency of the duplicated CYP2A6*1x2 allele occurred among Chinese. Among Malays and Chinese, the most common allele was CYP2A6*1B, but it was CYP2A6*1A among Indians. These ethnic difference in frequencies suggested that further studies are required to investigate the implications on diseases such as cancer and smoking behaviour among these major ethnic groups in Malaysia.
    Matched MeSH terms: Databases, Genetic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links