Displaying publications 41 - 60 of 1061 in total

Abstract:
Sort:
  1. Curren E, Kuwahara VS, Yoshida T, Leong SCY
    Funct Integr Genomics, 2024 Mar 02;24(2):46.
    PMID: 38429576 DOI: 10.1007/s10142-024-01328-9
    Cyanobacteria are oxygenic photosynthetic organisms which are found across many ecosystems, including freshwater and marine habitats. They are also found on natural and artificial surfaces. In this study, we cultured and characterise a novel cyanobacterium from the surfaces of foam microplastics of tropical coastal waters. We study the chemical ecology of this cyanobacterium, Sphaerothrix gracilis gen. et sp. nov., together with its potential to form harmful cyanobacterial blooms and bioremediation applications to combat plastic pollution. The genome of S. gracilis spanned 6.7 Mbp, with identification of antibiotic resistance, nitrogen-fixation, plastic-degrading and genes involved in harmful metabolite production. The transport of potentially harmful S. gracilis in coastal environments could have severe implications on human health and food security, especially in times of a cyanobacterial bloom.
    Matched MeSH terms: Ecosystem*
  2. Han DHT, James D, Waheed Z, Phua MH
    Mar Environ Res, 2024 May;197:106454.
    PMID: 38552455 DOI: 10.1016/j.marenvres.2024.106454
    Over the years, coral reefs in the South China Sea have degraded and faced severe threats from rapid development, coral bleaching, and Crown-of-Thorns Starfish (COTS) outbreak. There is limited knowledge relating to the effects of anthropogenic disturbances and natural events on the coral reefs of Pulau Layang-Layang. This study aims to assess reef cover changes by utilizing Landsat satellite images spanning from 1989 to 2022. Using the object-based image analysis method, this study classified the reef cover into three categories: coral, rock and rubble, and sand. The supervised classification had an overall accuracy of 86.41-87.38 % and Tau's coefficients of 0.80-0.81. The results showed island development and construction of artificial bird sanctuary have led to an increase in coral cover. Furthermore, it was illustrated that the impact of COTS outbreaks in 2010 and 2020 differed significantly, with the latter showing no signs of recovery. Our study underscores the importance of timely intervention to mitigate the spread of COTS. This study provides insights into the resilience and vulnerability of these ecosystems in the face of various stressors.
    Matched MeSH terms: Ecosystem*
  3. Teow HH, Ahmed PK, Nair MS, Vaithilingam S
    Lancet Planet Health, 2024 Apr;8 Suppl 1:S20.
    PMID: 38632916 DOI: 10.1016/S2542-5196(24)00085-8
    BACKGROUND: Green education is an essential precursor to promoting long-term sustainable practices and fostering environmentally conscious behaviours, especially among the younger generations. Such education equips individuals with the knowledge, awareness, and experiences necessary for green behavioural shifts, empowering them to engage actively in sustainable practices in the long run, which is essential for ensuring environmental sustainability. However, green education practices and policies vary among the countries of the Association of Southeast Asian Nations (ASEAN) owing to different levels of socioeconomic development, national priorities, and capacities of each member state. We aimed to analyse and compare the disparities in green education among pace-setter, maturing, and emerging ASEAN countries.

    METHODS: We used a case-study approach-a desktop analysis based on journal articles, country reports, newspaper articles, and other sources from the past 10 years-to analyse and compare the green education disparities among pace-setter, maturing, and emerging ASEAN countries.

    FINDINGS: As a pace-setter ASEAN country, Singapore has made impressive progress in promoting green education through the effective implementation of pragmatic policies and impactful green education initiatives. Furthermore, the country has established extensive formal and informal green education programmes that closely align with the Singapore Green Plan 2030. By contrast, maturing ASEAN countries are making incremental progress in incorporating green education into their formal education systems. However, challenges faced by these countries include a shortage of well-trained teachers, the lack of specific green education subjects in school syllabuses, and financial constraints. Despite these challenges, innovative approaches-such as partnerships with non-governmental organisations (eg, the World Wide Fund for Nature)-have emerged as promising strategies to promote green education within these maturing nations. Emerging ASEAN countries face the biggest challenges in promoting green education. Competing national priorities, political instability, limited funding and resources, inadequate infrastructure, and a lack of qualified educators pose challenging barriers to advancing green education within emerging ASEAN nations.

    INTERPRETATION: This study provides insights into the best practices and challenges surrounding green education within pace-setter, maturing, and emerging ASEAN countries. To address the disparities in green education among these countries, there is a need to adopt a holistic ecosystem framework characterised by the so-called 8i enablers, namely infrastructure (eg, well-equipped laboratories and learning spaces), infostructure (eg, advanced teaching technologies), intellectual capital (eg, well-trained educators), integrity systems (eg, efficient green education governance systems), incentives (eg, public and private funding for green education initiatives), institutions (ie, strong institutional leaders), interaction (ie, cooperation and collaboration among relevant stakeholders), and internationalisation (eg, leveraging regional and international partnerships to access expertise and resources).

    FUNDING: None.

    Matched MeSH terms: Ecosystem*
  4. Hasan M, Hassan L, Abdullah Al M, Kamal AHM, Idris MH, Hoque MZ, et al.
    Environ Sci Pollut Res Int, 2024 Apr;31(17):25329-25341.
    PMID: 38468013 DOI: 10.1007/s11356-024-32792-2
    Mangroves provide essential ecosystem services including coastal protection by acting as coastal greenbelts; however, human-driven anthropogenic activities altered their existence and ecosystem functions worldwide. In this study, the successive degradation of the second largest mangrove forest, Chakaria Sundarbans situated at the northern Bay of Bengal part of Bangladesh was assessed using remote sensing approaches. A total of five multi-temporal Landsat satellite imageries were collected and used to observe the land use land cover (LULC) changes over the time periods for the years 1972, 1990, 2000, 2010, and 2020. Further, the supervised classification technique with the help of support vector machine (SVM) algorithm in ArcGIS 10.8 was used to process images. Our results revealed a drastic change of Chakaria Sundarbans mangrove forest, that the images of 1972 were comprised of mudflat, waterbody, and mangroves, while the images of 1990, 2000, 2010, and 2020 were classified as waterbody, mangrove, saltpan, and shrimp farm. Most importantly, mangrove forest was the largest covering area a total of 64.2% in 1972, but gradually decreased to 12.7%, 6.4%, 1.9%, and 4.6% for the years 1990, 2000, 2010, and 2020, respectively. Interestingly, the rate of mangrove forest area degradation was similar to the net increase of saltpan and shrimp farms. The kappa coefficients of classified images were 0.83, 0.87, 0.80, 0.87, and 0.91 with the overall accuracy of 88.9%, 90%, 85%, 90%, and 93.3% for the years 1972, 1990, 2000, 2010, and 2020, respectively. By analyzing normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), and transformed difference vegetation index (TDVI), our results validated that green vegetated area was decreased alarmingly with time in this study area. This destruction was mainly related to active human-driven anthropogenic activities, particularly creating embankments for fish farms or salt productions, and cutting for collection of wood as well. Together all, our results provide clear evidence of active anthropogenic stress on coastal ecosystem health by altering mangrove forest to saltpan and shrimp farm saying goodbye to the second largest mangrove forest in one of the coastal areas of the Bay of Bengal, Bangladesh.
    Matched MeSH terms: Ecosystem*
  5. Bidoglio GA, Mueller ND, Kastner T
    Sci Total Environ, 2023 May 15;873:162226.
    PMID: 36801408 DOI: 10.1016/j.scitotenv.2023.162226
    In our globalized world, local impacts of agricultural production are increasingly driven by consumption in geographically distant places. Current agricultural systems strongly rely on nitrogen (N) fertilization to increase soil fertility and crop yields. Yet, a large portion of N added to cropland is lost through leaching / runoff potentially leading to eutrophication in coastal ecosystems. By coupling data on global production and N fertilization for 152 crops with a Life Cycle Assessment (LCA)-based model, we first estimated the extent of oxygen depletion occurring in 66 Large Marine Ecosystems (LMEs) due to agricultural production in the watersheds draining into these LMEs. We then linked this information to crop trade data to assess the displacement from consuming to producing countries, in terms of oxygen depletion impacts associated to our food systems. In this way, we characterized how impacts are distributed between traded and domestically sourced agricultural products. We found that few countries dominate global impacts and that cereal and oil crop production accounts for the bulk of oxygen depletion impacts. Globally, 15.9 % of total oxygen depletion impacts of crop production are ascribable to export-driven production. However, for exporting countries like Canada, Argentina or Malaysia this share is much higher, often up to three-quarters of their production impacts. In some importing countries, trade contributes to reduce pressure on already highly affected coastal ecosystems. This is the case for countries whose domestic crop production is associated with high oxygen depletion intensities, i.e. the impact per kcal produced, such as Japan or South Korea. Next to these positive effects trade can play in lowering overall environmental burdens, our results also highlight the importance of a holistic food system perspective when aiming to reduce the oxygen depletion impacts of crop production.
    Matched MeSH terms: Ecosystem*
  6. Alkhadher SAA, Suratman S, Zakaria MP
    Environ Monit Assess, 2023 May 24;195(6):720.
    PMID: 37222826 DOI: 10.1007/s10661-023-11310-w
    One of the molecular chemical markers used to identify anthropogenic inputs is linear alkylbenzenes (LABs) that cause serious impacts in the bays and coastal ecosystems. The surface sediments samples collected from the East Malaysia, including Brunei bay to estimate the LABs concentration and distribution as molecular markers of anthropogenic indicators. Gas chromatography-mass spectrometry (GC-MS) was used after purification, fractionation the hydrocarbons in the sediment samples to identify the sources of LABs. The analysis of variance (ANOVA) and Pearson correlation coefficient were applied to analyze the difference between sampling stations' significance at p 
    Matched MeSH terms: Ecosystem*
  7. Yang A, Huan X, Teo BSX, Li W
    Environ Sci Pollut Res Int, 2023 Apr;30(16):45951-45965.
    PMID: 36710307 DOI: 10.1007/s11356-023-25484-w
    Green finance can promote economic transformation and technological innovation and play a key role in solving the ecological environment and energy crisis. This paper constructs a comprehensive ecological livable environment evaluation system based on the provincial panel data in China from 2011 to 2019. At the same time, the panel mediation effect and spatial econometric model are used to test the impact of green finance on the ecological and livable environment. The main research conclusions include the following: (1) green finance has significantly improved China's ecological and livable environment; (2) green finance improves the ecological and livable environment by improving the level of technological innovation; (3) the impact of green finance on the ecological livable environment has regional heterogeneity, and green finance in the central provinces has a better effect on the improvement of the ecological livable environment; and (4) the ecological livable environment among Chinese provinces has a significant positive spatial correlation. Among them, green finance has significantly improved the local ecological livable environment but reduced the ecological livable environment of surrounding provinces. Based on the above conclusions, this paper suggests that the government should pay more attention to green finance and technological innovation and coordinate the development of the ecological livable environment among provinces. The research results provide empirical evidence for better developing green finance and improving the ecological livable environment and also provide certain theoretical guidance for China's coordinated regional development and high-quality economic development.
    Matched MeSH terms: Ecosystem*
  8. Zhang M, Zhang F, Guo L, Dong P, Cheng C, Kumar P, et al.
    J Environ Manage, 2023 Dec 15;348:119465.
    PMID: 37924697 DOI: 10.1016/j.jenvman.2023.119465
    Grassland degradation poses a serious threat to biodiversity, ecosystem services, and human well-being. In this study, we investigated grassland degradation in Zhaosu County, China, between 2001 and 2020, and analyzed the impacts of climate change and human activities using the Miami model. The actual net primary productivity (ANPP) obtained with CASA (Carnegie-Ames-Stanford Approach) modeling, showed a decreasing trend, reflecting the significant degradation that the grasslands in Zhaosu County have experienced in the past 20 years. Grassland degradation was found to be highest in 2018, while the degraded area continuously decreased in the last 3 years (2018-2020). Climatic factors for found to be the dominant factor affecting grassland degradation, particularly the decrease in precipitation. On the other hand, human activities were found to be the main factor affecting improvement of grasslands, especially in recent years. This finding profoundly elucidates the underlying causes of grassland degradation and improvement and helps implement ecological conservation and restoration measures. From a practical perspective, the research results provide an important reference for the formulation of policies and management strategies for sustainable land use.
    Matched MeSH terms: Ecosystem*
  9. Brändle J, Kunert N
    Tree Physiol, 2019 12 01;39(12):1975-1983.
    PMID: 31631217 DOI: 10.1093/treephys/tpz104
    Tree autotrophic respiratory processes, especially stem respiration or stem CO2 efflux (Estem), are important components of the forest carbon budget. Despite efforts to investigate the controlling processes of Estem in recent years, a considerable lack in our knowledge remains on the abiotic and biotic drivers affecting Estem dynamics. It has been strongly advocated that long-term measurements would shed light onto those processes. The expensive scientific instruments needed to measure gas exchange have prevented Estem measurements from being applied on a larger temporal and spatial scale. Here, we present an automated closed dynamic chamber system based on inexpensive and industrially broadly applied CO2 sensors, reducing the costs for the sensing system to a minimum. The CO2 sensor was cross-calibrated with a commonly used gas exchange system in the laboratory and in the field, and we found very good accordance of these sensors. We tested the system under harsh tropical climatic conditions, characterized by heavy tropical rainfall events, extreme humidity and temperatures, in a moist lowland forest in Malaysia. We recorded Estem of three Dyera costulata (Miq.) trees with our prototype over various days. The variation of Estem was large among the three tree individuals and varied by 7.5-fold. However, clear diurnal changes in Estem were present in all three tree individuals. One tree showed high diurnal variation in Estem, and the relationship between Estem and temperature was characterized by a strong hysteresis. The large variations found within one single tree species highlight the importance of continuous measurement to quantify ecosystem carbon fluxes.
    Matched MeSH terms: Ecosystem*
  10. Sirichantakul K, Hmone ZW, Kyaw ML, Thandar C
    Zootaxa, 2024 Feb 07;5406(3):481-486.
    PMID: 38480137 DOI: 10.11646/zootaxa.5406.3.7
    A curious micropteous gaudy grasshopper (family Pyrgomorphidae), Burmorthacris subaptera was described by Kevan, Singh and Akbar in 1964 as a sole member of its genus based on a female and a male collected in Yenangyaung (upper Myanmar) on 27th and 28th August 1937 and which were deposited at the Academy of Natural Sciences of Philadelphia. The species has never been reported since then. The genus Burmorthacris is the northernmost of the Orthacris genus group genera, which includes mostly genera from Sri Lanka and Malaysia. Recently we rediscovered this B. subaptera in its type locality (Yenangyaung township in the Magway Region) in Myanmar, 85 years after the holotype and the paratype were collected in the same place, and furthermore herewith we present one more locality in another region where the species has been found (Nyaung-U township in the Mandalay Region). Due to the lack of basically any information on this species distribution and habitat, including also photographs of its natural coloration in this habitat, the present study provides the first-time photographs of B. subaptera in its natural habitat from both localities, as well as some insights into its morphology, especially coloration, habitat, and behavior.
    Matched MeSH terms: Ecosystem*
  11. Hendriks KP, Bisschop K, Kortenbosch HH, Kavanagh JC, Larue AEA, Chee-Chean P, et al.
    Ecology, 2021 Feb;102(2):e03237.
    PMID: 33098661 DOI: 10.1002/ecy.3237
    Classical ecological theory posits that species partition resources such that each species occupies a unique resource niche. In general, the availability of more resources allows more species to co-occur. Thus, a strong relationship between communities of consumers and their resources is expected. However, correlations may be influenced by other layers in the food web, or by the environment. Here we show, by studying the relationship between communities of consumers (land snails) and individual diets (from seed plants), that there is in fact no direct, or at most a weak but negative, relationship. However, we found that the diversity of the individual microbiome positively correlates with both consumer community diversity and individual diet diversity in three target species. Moreover, these correlations were affected by various environmental variables, such as anthropogenic activity, habitat island size, and a possibly important nutrient source, guano runoff from nearby caves. Our results suggest that the microbiome and the environment explain the absence of correlations between diet and consumer community diversity. Hence, we advocate that microbiome inventories are routinely added to any community dietary analysis, which our study shows can be done with relatively little extra effort. Our approach presents the tools to quickly obtain an overview of the relationships between consumers and their resources. We anticipate our approach to be useful for ecologists and environmentalists studying different communities in a local food web.
    Matched MeSH terms: Ecosystem*
  12. Thapa S, Zaki SA
    J Therm Biol, 2024 Feb;120:103809.
    PMID: 38364574 DOI: 10.1016/j.jtherbio.2024.103809
    The sub-Himalayan region extends over 2500 km, extending over several countries. Though the effects of climate change is widely anticipated in the diverse but fragile ecosystem of the Himalayas, very less research has been conducted on the indoor environment of the buildings in these regions. In this study, a pre-validated model of 3-storey concrete residential building was used to study the indoor performance and thermal comfort in the face of climate change in the 8 (eight) different hill towns (hill stations) located from west to the east. Rise in ambient and indoor conditions were evident as a part of climate change with colder locations being affected the most. The thermal comfort assessment using both the climate chamber based PMV model and adaptive models revealed the decrease in cold related discomfort and increase in hot related discomfort. On an overall, the indoor conditions improved in these cold locations. The indoor and outdoor thermal condition and thermal comfort plummeted significantly with latitude and elevation. The heating demand in the future climate reduced by about 50-70 % in warmer locations, while the cooling demand increased by as much as 1000-2000 % in cold locations, respectively. Additionally, it was seen that the thermal environment and comfort both declined more rapidly with elevation in the locations lying in the western Himalayas as compared to those in the eastern Himalayas.
    Matched MeSH terms: Ecosystem*
  13. Liu B, Wang J
    J Environ Public Health, 2022;2022:3883459.
    PMID: 36017246 DOI: 10.1155/2022/3883459
    Language and culture ecological environment introduces ecological theory into language and culture research, expanding the horizon of language research. The influence of language and cultural, ecological environment on English writing covers many aspects. The cognitive process of English writing involves preparation before writing, self-monitoring during writing, and self-reflection after writing. Therefore, the use of metacognition and other strategies in the cognitive process of English writing is the key to improving the cognitive level of English writing. Under the guidance of the new curriculum standards for high school English, the cognitive process of English writing should pay attention to the guidance and shaping of students' emotional experience and thinking values. Education is inseparable from the development of language and culture, and analyzing the educational ecosystem from an ecological perspective is conducive to further understanding the ecological view of language and culture. This paper focuses on the composition of the language and culture ecological environment and the influence of the language and culture environment on the cognitive process of English writing and appropriately reviews the history of cognitive psychology and ecology and development of knowledge research.
    Matched MeSH terms: Ecosystem*
  14. Khairun Waheeda AI, Teh JC, Arshad A, Wong NLWS
    Mar Pollut Bull, 2023 Jul;192:115111.
    PMID: 37295254 DOI: 10.1016/j.marpolbul.2023.115111
    This study investigated the impacts of the removal of sand bund on the macrobenthos community structure, seagrass cover, and sediment particle size in Merambong Shoal, Malaysia. The reclamation project deposited sand bund in the middle of Merambong seagrass shoal, resulting in its division into northern (NS) and southern (SS) halves. Ecosystem changes were monitored over a 31-month period using the transect lines method. Bi-monthly samples were collected for assessment. The results revealed a substantial decline in macrobenthos densities compared to previous studies. However, after the removal of the sand bund, there was a significant increase in macrobenthos density, specifically Polychaeta and Malacostraca, at NS. Seagrass cover at NS was initially lower than SS but showed an increase after the complete removal of the sand blockage. Sediment particle analysis reported a higher silt percentage at NS, indicating greater sedimentation at NS, which was partially sheltered from wave actions.
    Matched MeSH terms: Ecosystem*
  15. Razak MR, Aris AZ, Yusoff FM, Yusof ZNB, Abidin AAZ, Kim SD, et al.
    Environ Geochem Health, 2023 Jun;45(6):3567-3583.
    PMID: 36450975 DOI: 10.1007/s10653-022-01442-2
    Bisphenol A (BPA) is a well-known endocrine-disrupting compound that causes several toxic effects on human and aquatic organisms. The restriction of BPA in several applications has increased the substituted toxic chemicals such as bisphenol F (BPF) and bisphenol S (BPS). A native tropical freshwater cladoceran, Moina micrura, was used as a bioindicator to assess the adverse effects of bisphenol analogues at molecular, organ, individual and population levels. Bisphenol analogues significantly upregulated the expressions of stress-related genes, which are the haemoglobin and glutathione S-transferase genes, but the sex determination genes such as doublesex and juvenile hormone analogue genes were not significantly different. The results show that bisphenol analogues affect the heart rate and mortality rate of M. micrura. The 48-h lethal concentration (LC50) values based on acute toxicity for BPA, BPF and BPS were 611.6 µg L-1, 632.0 µg L-1 and 819.1 µg L-1, respectively. The order of toxicity based on the LC50 and predictive non-effect concentration values were as follows: BPA > BPF > BPS. Furthermore, the incorporated method combining the responses throughout the organisation levels can comprehensively interpret the toxic effects of bisphenol analogues, thus providing further understanding of the toxicity mechanisms. Moreover, the output of this study produces a comprehensive ecotoxicity assessment, which provides insights for the legislators regarding exposure management and mitigation of bisphenol analogues in riverine ecosystems.
    Matched MeSH terms: Ecosystem*
  16. Johnson E, Campos-Cerqueira M, Jumail A, Yusni ASA, Salgado-Lynn M, Fornace K
    Trends Parasitol, 2023 May;39(5):386-399.
    PMID: 36842917 DOI: 10.1016/j.pt.2023.01.008
    Emerging infectious diseases continue to pose a significant burden on global public health, and there is a critical need to better understand transmission dynamics arising at the interface of human activity and wildlife habitats. Passive acoustic monitoring (PAM), more typically applied to questions of biodiversity and conservation, provides an opportunity to collect and analyse audio data in relative real time and at low cost. Acoustic methods are increasingly accessible, with the expansion of cloud-based computing, low-cost hardware, and machine learning approaches. Paired with purposeful experimental design, acoustic data can complement existing surveillance methods and provide a novel toolkit to investigate the key biological parameters and ecological interactions that underpin infectious disease epidemiology.
    Matched MeSH terms: Ecosystem*
  17. Voon PJ, Lai WH, Bustaman RS, Siu LL, Razak ARA, Yusof A, et al.
    Asia Pac J Clin Oncol, 2023 Jun;19(3):296-304.
    PMID: 36305522 DOI: 10.1111/ajco.13886
    Historically, the majority of oncology clinical trials are conducted in Western Europe and North America. Globalization of drug development has resulted in sponsors shifting their focus to the Asia-Pacific region. In Malaysia, implementation of various government policies to promote clinical trials has been initiated over a decade ago and includes the establishment of Clinical Research Malaysia, which functions as a facilitator and enabler of industry-sponsored clinical trials on a nationwide basis. Although oncology clinical trials in Malaysia have seen promising growth, there are still only a limited number of early phase oncology studies being conducted. Hence, the Phase 1 Realization Project was initiated to develop Malaysia's early phase clinical trial capabilities. In addition, the adaptation of good practices from other countries contribute to the effective implementation of existing initiatives to drive progress in the development of early phase drug development set up in Malaysia. Furthermore, holistic approaches with emphasis in training and education, infrastructure capacities, strategic alliances, reinforcement of upstream activities in the value chain of drug development, enhanced patient advocacy, coupled with continued commitment from policy makers are imperative in nurturing a resilient clinical research ecosystem in Malaysia.
    Matched MeSH terms: Ecosystem*
  18. Gallagher AJ, Brownscombe JW, Alsudairy NA, Casagrande AB, Fu C, Harding L, et al.
    Nat Commun, 2022 Nov 01;13(1):6328.
    PMID: 36319621 DOI: 10.1038/s41467-022-33926-1
    Seagrass conservation is critical for mitigating climate change due to the large stocks of carbon they sequester in the seafloor. However, effective conservation and its potential to provide nature-based solutions to climate change is hindered by major uncertainties regarding seagrass extent and distribution. Here, we describe the characterization of the world's largest seagrass ecosystem, located in The Bahamas. We integrate existing spatial estimates with an updated empirical remote sensing product and perform extensive ground-truthing of seafloor with 2,542 diver surveys across remote sensing tiles. We also leverage seafloor assessments and movement data obtained from instrument-equipped tiger sharks, which have strong fidelity to seagrass ecosystems, to augment and further validate predictions. We report a consensus area of at least 66,000 km2 and up to 92,000 km2 of seagrass habitat across The Bahamas Banks. Sediment core analysis of stored organic carbon further confirmed the global relevance of the blue carbon stock in this ecosystem. Data from tiger sharks proved important in supporting mapping and ground-truthing remote sensing estimates. This work provides evidence of major knowledge gaps in the ocean ecosystem, the benefits in partnering with marine animals to address these gaps, and underscores support for rapid protection of oceanic carbon sinks.
    Matched MeSH terms: Ecosystem*
  19. Heděnec P, Jiménez JJ, Moradi J, Domene X, Hackenberger D, Barot S, et al.
    Sci Rep, 2022 Oct 17;12(1):17362.
    PMID: 36253487 DOI: 10.1038/s41598-022-21563-z
    Soil invertebrates (i.e., soil fauna) are important drivers of many key processes in soils including soil aggregate formation, water retention, and soil organic matter transformation. Many soil fauna groups directly or indirectly participate in litter consumption. However, the quantity of litter consumed by major faunal groups across biomes remains unknown. To estimate this quantity, we reviewed > 1000 observations from 70 studies that determined the biomass of soil fauna across various biomes and 200 observations from 44 studies on litter consumption by soil fauna. To compare litter consumption with annual litterfall, we analyzed 692 observations from 24 litterfall studies and 183 observations from 28 litter stock studies. The biomass of faunal groups was highest in temperate grasslands and then decreased in the following order: boreal forest > temperate forest > tropical grassland > tundra > tropical forest > Mediterranean ecosystems > desert and semidesert. Tropical grasslands, desert biomes, and Mediterranean ecosystems were dominated by termites. Temperate grasslands were dominated by omnivores, while temperate forests were dominated by earthworms. On average, estimated litter consumption (relative to total litter input) ranged from a low of 14.9% in deserts to a high of 100.4% in temperate grassland. Litter consumption by soil fauna was greater in grasslands than in forests. This is the first study to estimate the effect of different soil fauna groups on litter consumption and related processes at global scale.
    Matched MeSH terms: Ecosystem*
  20. Rácz IA, Szanyi S, Nagy A
    Biol Futur, 2023 Dec;74(4):393-400.
    PMID: 38349457 DOI: 10.1007/s42977-024-00203-9
    The importance of pollination and pollinators is easy to underestimate and impossible to overstate, since its importance goes far beyond the crop production and even the maintenance of plant populations. Most terrestrial ecosystems ultimately depend on the plant-pollinator interactions formed by million years coevolution. This is essential for both the daily functioning of the ecosystems and the long-term development of biodiversity. At the same time, the loss of biodiversity caused by climate change and human activities will soon lead to an ecological crisis, a catastrophe, which could endanger our life: For example, through the decline and loss of various ecosystem services. Such may be the pollination crisis, resulted from a significant loss of pollinating insects' diversity and abundance. The discovery of a pollinator Orthoptera species has encouraged researchers in the densely populated region of Indo-Malaysia to explore the potential role of orthopterans as pollinators. Although the flower visitation of some species has been already known, the role of orthopterans in pollination is scarcely revealed. Here, we collected and reviewed the available data in order to point out some factors of their importance and set priorities that may serve as a basis for further investigations regarding ecological, evolutionary and practical points of view.
    Matched MeSH terms: Ecosystem*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links