Displaying publications 41 - 60 of 69 in total

Abstract:
Sort:
  1. Lih Shan Lim, Suk Fun Chin, Suh Cem Pang, Magdline Sia Henry Sum, David Perera
    Sains Malaysiana, 2017;46:2447-2454.
    A novel silver nanoparticles (Ag NPs)-based optical sensing probe has been developed for the detection of Japanese Encephalitis virus (JEV). Ag NPs were initially deposited onto amine functionalized glass slides. Subsequently, JEV antibodies were self-assembled onto surfaces of Ag NPs to form optical sensing probes. The detection of JEV antigen was observed via changes in light absorbance by Ag NPs upon occurrence of JEV antigen-antibody bindings. A highly sensitive and rapid optical sensing probe for JEV antigen with a detection limit of 12.8 ng/mL (for S/N ratio = 3) and an analysis assay time of 1 h had been demonstrated.
    Matched MeSH terms: Encephalitis, Japanese
  2. Paul FM
    Med J Malaysia, 1982 Dec;37(4):357-61.
    PMID: 6300621
    Consideration. is gzven to the recognition and prevention of carious types of mental retardation due to hazards of environmental origin. Observations are presented on congenital syphilis, congenital toxoplasmosis, congenital rubella, Singapore kernicterus, Japanese B encephalitis, and tuberculous meningitis. Appropriate preventiue measures have resulted in a significant reduction in Singapore of these conditions, and hence in a decreased frequency of environmentally determined mental retardation. and related disabilities.
    Matched MeSH terms: Encephalitis, Japanese/complications
  3. Bendell PJ
    Trans R Soc Trop Med Hyg, 1970;64(4):497-502.
    PMID: 4394985
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  4. Low VL, Wong ML, Liew JWK, Pramasivan S, Jeyaprakasam NK, Vythilingam I
    Acta Trop, 2020 Jan;201:105207.
    PMID: 31586449 DOI: 10.1016/j.actatropica.2019.105207
    A gynandromorph of Culex sitiens Wiedemann (Diptera: Culicidae) was attracted to a human during a mosquito surveillance programme conducted in Kuala Lipis, Pahang, Malaysia on July 20, 2019. Gynandromorphism was observed in antennae, maxillary palps, legs and wings of the specimen, with distinct male characters on the left and female characters on the right, though the left maxillary palp is slightly shorter than the proboscis of a typical male. The abdomen, however, displays well-developed male genitalia. This study represents the first report of oblique gynandromorphism in Cx. sitiens, one of the vectors of Japanese encephalitis in Asia.
    Matched MeSH terms: Encephalitis, Japanese/transmission*
  5. Vythilingam I, Singh KI, Mahadevan S, Zaridah MS, Ong KK, Abidin MH
    J Am Mosq Control Assoc, 1993 Dec;9(4):467-9.
    PMID: 8126485
    Mosquito collections were carried out from May to June 1992 and from September to December 1992 in an area where a case of Japanese encephalitis was confirmed. A total of 40,072 mosquitoes belonging to 35 species and 8 genera were collected. The dominant species in that locality were Culex vishnui, Culex tritaeniorhynchus, Culex pseudovishnui, Culex gelidus, Aedes butleri, and Mansonia uniformis.
    Matched MeSH terms: Encephalitis, Japanese/transmission*
  6. Lewthwaite P, Shankar MV, Tio PH, Daly J, Last A, Ravikumar R, et al.
    Trop Med Int Health, 2010 Jul;15(7):811-8.
    PMID: 20487425 DOI: 10.1111/j.1365-3156.2010.02537.x
    OBJECTIVE: To compare two commercially available kits, Japanese Encephalitis-Dengue IgM Combo ELISA (Panbio Diagnostics) and JEV-CheX IgM capture ELISA (XCyton Diagnostics Limited), to a reference standard (Universiti Malaysia Sarawak - Venture Technologies VT ELISA).

    METHODS: Samples were obtained from 172/192 children presenting to a site in rural India with acute encephalitis syndrome.

    RESULTS: Using the reference VT ELISA, infection with Japanese encephalitis virus (JEV) was confirmed in 44 (26%) patients, with central nervous system infection confirmed in 27 of these; seven patients were dengue seropositive. Of the 121 remaining patients, 37 (31%) were JEV negative and 84 (69%) were JEV unknown because timing of the last sample tested was <10 day of illness or unknown. For patient classification with XCyton, using cerebrospinal fluid alone (the recommended sample), sensitivity was 77.8% (59.2-89.4) with specificity of 97.3% (90.6-99.2). For Panbio ELISA, using serum alone (the recommended sample), sensitivity was 72.5% (57.2-83.9) with specificity of 97.5% (92.8-99.1). Using all available samples for patient classification, sensitivity and specificity were 63.6% (95% CI: 48.9-76.2) and 98.4% (94.5-99.6), respectively, for XCyton ELISA and 75.0% (59.3-85.4) and 97.7% (93.3-99.2) for Panbio ELISA.

    CONCLUSION: The two commercially available ELISAs had reasonable sensitivities and excellent specificities for diagnosing JEV.

    Matched MeSH terms: Encephalitis, Japanese/diagnosis*
  7. Montini Maluda MC, Jelip J, Ibrahim MY, Suleiman M, Jeffree MS, Binti Aziz AF, et al.
    Am J Trop Med Hyg, 2020 08;103(2):864-868.
    PMID: 32524958 DOI: 10.4269/ajtmh.19-0928
    Japanese encephalitis (JE) is endemic in Malaysia. Although JE vaccination is practiced in the neighboring state of Sarawak for a long time, little is known about JE in Sabah state in Borneo. As a result, informed policy formulation for JE in Sabah has not been accomplished. In the present study, we have analyzed JE cases that have been reported to the Sabah State Health Department from 2000 to 2018. A total of 92 JE cases were reported during 19 years, and three-fourths of the cases were attributed to children. The estimated mean incidence for JE cases is 0.161/100,000 population. Japanese encephalitis was predominant in Sabah during June, July, and August, peaking in July. In most cases, pigs were absent within a 400-m radius of the place of residence. We could not establish any relationship between the mapping of JE cases and the number of piggeries in each district. We could not establish a relationship between average rainfall and JE cases, either. We propose the cases reported are possibly showing the tip of an iceberg and continuous surveillance is needed, as JE is a public health challenge in Sabah.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  8. Pyke AT, Williams DT, Nisbet DJ, van den Hurk AF, Taylor CT, Johansen CA, et al.
    Am J Trop Med Hyg, 2001 Dec;65(6):747-53.
    PMID: 11791969
    In mid-January 2000, the reappearance of Japanese encephalitis (JE) virus activity in the Australasian region was first demonstrated by the isolation of JE virus from 3 sentinel pigs on Badu Island in the Torres Strait. Further evidence of JE virus activity was revealed through the isolation of JE virus from Culex gelidus mosquitoes collected on Badu Island and the detection of specific JE virus neutralizing antibodies in 3 pigs from Saint Pauls community on Moa Island. Nucleotide sequencing and phylogenetic analyses of the premembrane and envelope genes were performed which showed that both the pig and mosquito JE virus isolates (TS00 and TS4152, respectively) clustered in genotype I, along with northern Thai, Cambodian, and Korean isolates. All previous Australasian JE virus isolates belong to genotype II, along with Malaysian and Indonesian isolates. Therefore, for the first time, the appearance and transmission of a second genotype of JE virus in the Australasian region has been demonstrated.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*
  9. Takhampunya R, Kim HC, Tippayachai B, Kengluecha A, Klein TA, Lee WJ, et al.
    Virol J, 2011;8:449.
    PMID: 21943222 DOI: 10.1186/1743-422X-8-449
    Japanese encephalitis virus (JEV) genotype V reemerged in Asia (China) in 2009 after a 57-year hiatus from the continent, thereby emphasizing a need to increase regional surveillance efforts. Genotypic characterization was performed on 19 JEV-positive mosquito pools (18 pools of Culex tritaeniorhynchus and 1 pool of Cx. bitaeniorhynchus) from a total of 64 positive pools collected from geographically different locations throughout the Republic of Korea (ROK) during 2008 and 2010.
    Matched MeSH terms: Encephalitis, Japanese/genetics; Encephalitis, Japanese/epidemiology; Encephalitis, Japanese/transmission; Encephalitis, Japanese/virology*
  10. Monath TP
    PMID: 12082985
    Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed.
    Matched MeSH terms: Encephalitis, Japanese/immunology; Encephalitis, Japanese/prevention & control*
  11. Schuh AJ, Guzman H, Tesh RB, Barrett AD
    Vector Borne Zoonotic Dis, 2013 Jul;13(7):479-88.
    PMID: 23590316 DOI: 10.1089/vbz.2011.0870
    Five genotypes (GI-V) of Japanese encephalitis virus (JEV) have been identified, all of which have distinct geographical distributions and epidemiologies. It is thought that JEV originated in the Indonesia-Malaysia region from an ancestral virus. From that ancestral virus GV diverged, followed by GIV, GIII, GII, and GI. Genotype IV appears to be confined to the Indonesia-Malaysia region, as GIV has been isolated in Indonesia from mosquitoes only, while GV has been isolated on three occasions only from a human in Malaysia and mosquitoes in China and South Korea. In contrast, GI-III viruses have been isolated throughout Asia and Australasia from a variety of hosts. Prior to this study only 13 JEV isolates collected from the Indonesian archipelago had been studied genetically. Therefore the sequences of the envelope (E) gene of 24 additional Indonesian JEV isolates, collected throughout the archipelago between 1974 and 1987, were determined and a series of molecular adaptation analyses were performed. Phylogenetic analysis indicated that over a 14-year time span three genotypes of JEV circulated throughout Indonesia, and a statistically significant association between the year of virus collection and genotype was revealed: isolates collected between 1974 and 1980 belonged to GII, isolates collected between 1980 and 1981 belonged to GIV, and isolates collected in 1987 belonged to GIII. Interestingly, three of the GII Indonesian isolates grouped with an isolate that was collected during the JE outbreak that occurred in Australia in 1995, two of the GIII Indonesian isolates were closely related to a Japanese isolate collected 40 years previously, and two Javanese GIV isolates possessed six amino acid substitutions within the E protein when compared to a previously sequenced GIV isolate collected in Flores. Several amino acids within the E protein of the Indonesian isolates were found to be under directional evolution and/or co-evolution. Conceivably, the tropical climate of the Indonesia/Malaysia region, together with its plethora of distinct fauna and flora, may have driven the emergence and evolution of JEV. This is consistent with the extensive genetic diversity seen among the JEV isolates observed in this study, and further substantiates the hypothesis that JEV originated in the Indonesia-Malaysia region.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology*; Encephalitis, Japanese/virology
  12. Kumar K, Arshad SS, Selvarajah GT, Abu J, Toung OP, Abba Y, et al.
    Trop Anim Health Prod, 2018 Apr;50(4):741-752.
    PMID: 29243139 DOI: 10.1007/s11250-017-1490-6
    Japanese encephalitis (JE) is vector-borne zoonotic disease which causes encephalitis in humans and horses. Clinical signs for Japanese encephalitis virus (JEV) infection are not clearly evident in the majority of affected animals. In Malaysia, information on the prevalence of JEV infection has not been established. Thus, a cross-sectional study was conducted during two periods, December 2015 to January 2016 and March to August in 2016, to determine the prevalence and risk factors in JEV infections among animals and birds in Peninsular Malaysia. Serum samples were harvested from the 416 samples which were collected from the dogs, cats, water birds, village chicken, jungle fowls, long-tailed macaques, domestic pigs, and cattle in the states of Selangor, Perak, Perlis, Kelantan, and Pahang. The serum samples were screened for JEV antibodies by commercial IgG ELISA kits. A questionnaire was also distributed to obtain information on the animals, birds, and the environmental factors of sampling areas. The results showed that dogs had the highest seropositive rate of 80% (95% CI: ± 11.69) followed by pigs at 44.4% (95% CI: ± 1.715), cattle at 32.2% (95% CI: ± 1.058), birds at 28.9% (95% CI: ± 5.757), cats at 15.6% (95% CI: ± 7.38), and monkeys at 14.3% (95% CI: ± 1.882). The study also showed that JEV seropositivity was high in young animals and in areas where mosquito vectors and migrating birds were prevalent.
    Matched MeSH terms: Encephalitis, Japanese/epidemiology; Encephalitis, Japanese/veterinary*
  13. Shigeharu Sato, Tomonori Hoshi, Bumpei Tojo, Samson Yodot, Joni Jain
    MyJurnal
    Introduction: Collecting mosquitoes is essential for research in mosquito-borne diseases, but the light traps used for that purpose are expensive and often difficult to obtain around research fields. We designed a new 3D-printable mosquito light trap that can be made inexpensively anywhere where electricity is available (Hoshi et al, Scientific Reports, in press). In this study, we produced that trap in Sabah and demonstrated its usefulness in the field. Meth-ods: With a 3D printer, the main parts of the trap - body, lid, lamp stand and collection box - were printed in Kota Kinabalu using black polylactic acid (PLA) filaments purchased online. All other parts such as the computer fan and batteries were commercially available at local shops in Sabah. The parts were assembled into the complete units at Universiti Malaysia Sabah’s Rural Medical Education Centre (RMEC) in Sikuati, Kudat. Demonstration was performed at two sites in the Kudat district: RMEC campus and the premises of a local farm in Kampung Paradason. Results: The 3D traps collected 6 and 7 different species of mosquitoes at RMEC and Paradason sites, respectively. The numbers of mosquito species collected by the commercially-available CDC model-512 traps in parallel experiments were 2 (RMEC) and 10 (Paradason). The species collected by the 3D traps included Aedes albopictus (vector transmitting Dengue virus), Anopheles barbumbrosus (malaria), Culex quinquefasciatus (Wuchereria bancrofti, avian malaria, and arboviruses including Japanese encephalitis and Zika viruses) and Mansonia indiana (Brugia malayi). Conclu-sion: The 3D light trap which was produced in Sabah demonstrated its usefulness in the field tests performed in the Kudat district. This model can be used as an alternative to the rather expensive commercial light traps to collect the vector insects transmitting mosquito-borne diseases such as malaria, dengue, Japanese encephalitis, Zika fever and filariasis.
    Matched MeSH terms: Encephalitis, Japanese
  14. Nealon J, Taurel AF, Yoksan S, Moureau A, Bonaparte M, Quang LC, et al.
    J Infect Dis, 2019 Jan 09;219(3):375-381.
    PMID: 30165664 DOI: 10.1093/infdis/jiy513
    Background: Japanese encephalitis virus (JEV) is a zoonotic, mosquito-borne flavivirus, distributed across Asia. Infections are mostly mild or asymptomatic, but symptoms include neurological disorders, sequelae, and fatalities. Data to inform control strategies are limited due to incomplete case reporting.

    Methods: We used JEV serological data from a multicountry Asian dengue vaccine study in children aged 2-14 years to describe JEV endemicity, measuring antibodies by plaque reduction neutralization test (PRNT50).

    Results: A total 1479 unvaccinated subjects were included. A minimal estimate of pediatric JEV seroprevalence in dengue-naive individuals was 8.1% in Indonesia, 5.8% in Malaysia, 10.8% in the Philippines, and 30.7% in Vietnam, translating to annual infection risks varying from 0.8% (in Malaysia) to 5.2% (in Vietnam). JEV seroprevalence and annual infection estimates were much higher in children with history of dengue infection, indicating cross-neutralization within the JEV PRNT50 assay.

    Conclusions: These data confirm JEV transmission across predominantly urban areas and support a greater emphasis on JEV case finding, diagnosis, and prevention.

    Matched MeSH terms: Encephalitis, Japanese
  15. Enserink M
    Science, 1999 Apr 16;284(5413):407, 409-10.
    PMID: 10232977 DOI: 10.1126/science.284.5413.407
    Matched MeSH terms: Encephalitis, Japanese/epidemiology
  16. Krishnan J, Mathiarasan L
    J Vector Borne Dis, 2019 1 9;55(3):189-196.
    PMID: 30618444 DOI: 10.4103/0972-9062.249127
    Background & objectives: : Increase of vector-borne diseases (VBDs) in India has posed a question on the situation in Lakshadweep Islands, where VBDs are reported from time-to-time. The present investigation was aimed to assess the faunastic situation of the prevailing vectors along with their breeding sites in different islands of the Lakshadweep.

    Methods: : Extensive surveys were carried out from November 2017 to January 2018 (post-monsoon season) randomly in the nine inhabited islands of Lakshadweep for conducting faunastic studies on mosquitoes and to know the basic binomics like breeding and resting preference of mosquitoes. The study islands included, Kavaratti, Agatti, Chetlat, Bitra, Amini, Kadmath, Andrott, Kalpeni and Kiltan. Both immature and adult collections were carried out by standard/appropriate sampling techniques. The obtained data were calculated and analysed in terms of different entomological indices.

    Results: : A total of 3356 mosquitoes were collected during the study period which comprised of 16 species from nine genera. Out of the 16 species, six belonged to mosquito vectors. The collection included malaria vector, Anopheles stephensi; Japanese encephalitis vector, Culex tritaeniorhynchus; Bancroftian filariasis vector, Cx. quinquefasciatus; Brugian filariasis vector, Mansonia uniformis; and dengue and chikungunya vectors, Stegomya albopicta and St. aegypti. Stegomya albopicta was the most predominant species observed constituting 54% of the catch, followed by Cx. quinquefasciatus, An. stephensi, Cx. tritaeniorhynchus, and St. aegypti constituting 10.5, 6, 3 and 1.2%, respectively. Apart from vector species many non-vectors such as Heizmannia chandi, An. subpictus, An. varuna, Cx. sitiens, Cx. minutissimus, Cx. rubithoracis, Fredwardsius vittatus, Lutzia fuscana, Malaya genurostris and Armigeres subalbatus were also present in the study area. In Kavaratti Island, the capital of Lakshadweep, a non-vector species of sandfly, Sergentomyia (Parrotomyia) babu was observed during the indoor resting collection. The major breeding sites which supported various mosquito species included, discarded plastic containers, tree holes, open sintex tanks (water storage tanks), unused wells, discarded tyres, discarded iron pots, unused and damaged boats, cement tanks, pleated plastic sheets, coral holes, pits and irrigation canals, discarded washing machines, and Colocasia plant leaf axils. Breteau index ranged between 65.3 and 110, CI ranged between 63.64 and 72.41; and HI ranged between 38.46 and 70 among the various islands.

    Interpretation & conclusion: : Entomological indices such as house index (HI), breteau index (BI) and pupal index (PI) were high in all the nine islands and exceeded the threshold levels specified by WHO, indicating high risk for dengue virus transmission in case of outbreaks. Occurrence of vector as well as non-vector species indicates that the global change in climate is causing notable changes in terms of breeding of vector and non-vector species in the islands. With the reported cases of VBDs and the presence of vectors species in Lakshadweep Islands, a stringent control measure needs to be implemented at the Lakshadweep Islands.

    Matched MeSH terms: Encephalitis, Japanese/epidemiology
  17. Amicizia D, Zangrillo F, Lai PL, Iovine M, Panatto D
    J Prev Med Hyg, 2018 Mar;59(1):E99-E107.
    PMID: 29938245 DOI: 10.15167/2421-4248/jpmh2018.59.1.962
    Japanese encephalitis (JE) is a vector-borne disease caused by the Japanese encephalitis virus (JEV). JEV is transmitted by mosquitoes to a wide range of vertebrate hosts, including birds and mammals. Domestic animals, especially pigs, are generally implicated as reservoirs of the virus, while humans are not part of the natural transmission cycle and cannot pass the virus to other hosts. Although JEV infection is very common in endemic areas (many countries in Asia), less than 1% of people affected develop clinical disease, and severe disease affects about 1 case per 250 JEV infections. Although rare, severe disease can be devastating; among the 30,000-50,000 global cases per year, approximately 20-30% of patients die and 30-50% of survivors develop significant neurological sequelae. JE is a significant public health problem for residents in endemic areas and may constitute a substantial risk for travelers to these areas. The epidemiology of JE and its risk to travelers have changed, and continue to evolve. The rapid economic growth of Asian countries has led to a surge in both inbound and outbound travel, making Asia the second most-visited region in the world after Europe, with 279 million international travelers in 2015. The top destination is China, followed by Thailand, Hong Kong, Malaysia and Japan, and the number of travelers is forecast to reach 535 million by 2030 (+ 4.9% per year). Because of the lack of treatment and the infeasibility of eliminating the vector, vaccination is recognized as the most efficacious means of preventing JE. The IC51 vaccine (IXIARO®) is a purified, inactivated, whole virus vaccine against JE. It is safe, well tolerated, efficacious and can be administered to children, adults and the elderly. The vaccination schedule involves administering 2 doses four weeks apart. For adults, a rapid schedule (0-7 days) is available, which could greatly enhance the feasibility of its use. Healthcare workers should inform both short- and long-term travelers of the risk of JE in each period of the year and recommend vaccination. Indeed, it has been shown that short-term travelers are also at risk, not only in rural environments, but also in cities and coastal towns, especially in tourist localities where excursions to country areas are organized.
    Matched MeSH terms: Encephalitis, Japanese/prevention & control*
  18. Wang HJ, Liu L, Li XF, Ye Q, Deng YQ, Qin ED, et al.
    J Gen Virol, 2016 07;97(7):1551-1556.
    PMID: 27100268 DOI: 10.1099/jgv.0.000486
    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate.
    Matched MeSH terms: Encephalitis, Japanese/immunology; Encephalitis, Japanese/virology*
  19. Darwish NT, Sekaran SD, Alias Y, Khor SM
    J Pharm Biomed Anal, 2018 Feb 05;149:591-602.
    PMID: 29197806 DOI: 10.1016/j.jpba.2017.11.064
    The sharp increase in incidence of dengue infection has necessitated the development of methods for the rapid diagnosis of this deadly disease. Here we report the design and development of a reliable, sensitive, and specific optical immunosensor for the detection of the dengue nonstructural protein 1 (NS1) biomarker in clinical samples obtained during early stages of infection. The present optical NS1 immunosensor comprises a biosensing surface consisting of specific monoclonal NS1 antibody for immunofluorescence-based NS1 antigen determination using fluorescein isothiocyanate (FITC) conjugated to IgG antibody. The linear range of the optical immunosensor was from 15-500ngmL-1, with coefficient of determination (R2) of 0.92, high reproducibility (the relative standard deviation obtained was 2%), good stability for 21days at 4°C, and low detection limit (LOD) at 15ngmL-1. Furthermore, the optical immunosensor was capable of detecting NS1 analytes in plasma specimens from patients infected with the dengue virus, with low cross-reaction with plasma specimens containing the Japanese encephalitis virus (JEV) and Zika virus. No studies have been performed on the reproducibility and cross-reactivity regarding NS1 specificity, which is thus a limitation for optical NS1 immunosensors. In contrast, the present study addressed these limitations carefully where these two important experiments were conducted to showcase the robustness of our newly developed optical-based fluorescence immunosensor, which can be practically used for direct NS1 determination in any untreated clinical sample.
    Matched MeSH terms: Encephalitis, Japanese/blood; Encephalitis, Japanese/virology
  20. Gibbs WW
    Sci. Am., 1999 Aug;281(2):80-7.
    PMID: 10443039
    Matched MeSH terms: Encephalitis, Japanese/virology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links