Displaying publications 41 - 60 of 821 in total

Abstract:
Sort:
  1. Sahoo S, Sahoo N, Biswal S, Mohanty BN, Behera B, Pahari A
    Trop Biomed, 2023 Jun 01;40(2):236-240.
    PMID: 37650411 DOI: 10.47665/tb.40.2.015
    Oriental theileriosis caused by Theileria orientalis is a growing health concern of lactating cows in its endemic areas. Rapid and sensitive diagnostic tests are demand areas for appropriate and effective prophylactic and therapeutic measures. Quantitative polymerase chain reaction (qPCR) is the answer for both detection and quantification of parasites. Present study deals with qPCR for detection of parasitemia level of T. orientalis in apparently healthy and clinically affected cows. Major piroplasm surface protein (MPSP) gene present in T. orientalis was cloned in pUC57 vector and transformed into E. coli Top 10 cells. Single and mixed infections of hemoprotozoa other than T. orientalis, causing anemia were differentiated through blood smear examination and PCR tests. T. orientalis was detected in 108 (63.15%) ill and 48 (26.66%) healthy cows. Piroplasms detected per 1000 red blood cells (RBCs) was 0-1 in the healthy group as compared to 3-22 in those showing clinical signs. Parasitemia in ill cows ranged between 6.9 × 102 and 4.5 × 103 parasites / µl of blood which was significantly higher (p<0.05) than healthy group (2.6 × 102 - 5.7 × 102 parasites / µl of blood). Phylogenetic study of the isolates showed similarity with Buffeli type that unfolded its pathogenic form in apparently healthy and ill cows.
    Matched MeSH terms: Escherichia coli
  2. Borkataki S, Katoch R, Goswami P, Bhat A, Chakraborty D
    Trop Biomed, 2021 Mar 01;38(1):86-93.
    PMID: 33797529 DOI: 10.47665/tb.38.1.015
    The study was aimed to evaluate the effectiveness of maggot therapy in healing of cutaneous infected wound in streptozotocin (STZ) induced diabetic Wistar rat. For live maggots, the sterilized eggs of Lucilia sericata were obtained from colonies established in laboratory. Diabetes model was established in 48 male Wister rat by intra-peritoneal injection of STZ at the dose of 60 mg/kg body-weight. Cutaneous wounds exposed with mixed colonies of bacteria like Staphylococcus aureus, E. coli and Pseudomonas aeruginosa were prepared in all rat. The animals equally divided in 4 groups with 12 rats each being presented as treatment group of control, antibiotic, maggot and maggot with antibiotic in combination. All treatments were done once and hold for 24 hours. Wound kinetics and bacterial bio burden were measured at weekly interval to till complete healing. Significant reduction in wound area with maximum contraction was found (>95%) in maggot treated group when compared to antibiotic treated (79%) and control (72%). In maggot as well as maggot and antibiotic in combination group showed early elimination of bacterial bio-burden 7.88±0.03log CFU/ml to 1.12±0.65log CFU/ml and 7.86±0.04) log CFU/ml to 1.54±0.52log CFU/ml respectively in three weeks of time. Early healing indication was also experienced on histomorphological examination of wounded tissue of maggot treated groups by early and better epithelialization, collagenation and neovascularization with complete healing of wound in three weeks in comparison to antibiotic and control respectively. However, the present study did not show any difference in healing of wound with use of maggot alone or in antibiotic combination. Live maggot of Lucilia sericata effectively lower bacterial bioburden and and accelerate healing of infected cutaneous wound in diabetic conditions.
    Matched MeSH terms: Escherichia coli Infections/therapy
  3. Jegathesan M, Wah LT, Soon LE, Su Har D, Boo Liat L
    Trop Geogr Med, 1976 Jun;28(2):91-5.
    PMID: 788266
    Three species of commonly eaten shellfish found in Malaysian coastal waters were examined for the presence of common bacterial enteropathogens. Vibrio parahaemolyticus, non-agglutinating vibrios, and various serotypes of enteropathogenic E. coli were isolated from a large proportion of them. Salmonella were isolated in two instances. High colony counts with evidence of faecal contamination indicated the strong possibility of pulltion being the cause for the presence of these enteropathogens. Methods of cooking and eating these shellfish enhance their likelihood of acting as vehicles of diarrhoeal disease.
    Matched MeSH terms: Escherichia coli/isolation & purification*
  4. JIAZHEN LIM, YANG LEE, BADIOZAMAN SULAIMAN, LESLEY MAURICE BILUNG, YEE LING CHONG
    MyJurnal
    The epidermal mucus of fish contains antimicrobial agents that act as biological defence against disease. This study aims to identify antibacterial activity and protein concentration of epidermal mucus of Barbodes everetti, a Bornean endemic freshwater fish. The epidermal mucus was extracted with 3% acetic acid, 0.85% sodium chloride and crude solvents. The mucus activity against eight strains of human pathogenic bacteria, including Bacillus cereus ATCC 33019, Escherichia coli O157:H7, Listeria monocytogenes ATCC 7644, Pseudomonas aeruginosa ATCC 27853, Salmonella braenderup ATCC BAA 664, Salmonella typhimurium, Staphylococcus aureus ATCC 25933, and Vibrio cholerae, were tested. The acetic acid mucus extract of B. everetti was able to inhibit five strains of bacteria and show no activity toward E. coli O157:H7, B. cereus ATCC 33019 and L. monocytogenes ATCC 7644. Moreover, the highest protein concentration was quantified in crude extract, followed by aqueous and acetic acid extracts. This study provides a preliminary knowledge on the activity of epidermal mucus of B. everetti towards five out of the eight human pathogens tested, therefore it may contain potential sources of novel antibacterial components which could be further extracted for the production of natural antibiotics towards human-related pathogenic bacteria.
    Matched MeSH terms: Escherichia coli O157
  5. Desmarchelier P, Lew A, Caique W, Knight S, Toodayan W, Isa AR, et al.
    Trans R Soc Trop Med Hyg, 1992 7 1;86(4):448-50.
    PMID: 1440833
    The H2S water screening test and the membrane filtration faecal coliform count were compared with Escherichia coli counts for water samples collected from household water sources and domestic drinking water in rural Malaysia. Water samples were taken from 151 wells, 44 taps supplying water from the treated municipal supply and 192 domestic stored water supplies. E. coli were detected in 20% of the samples (42% of wells, 7% of tap water and 6% of drinking water). Excellent correlation (Spearman's rank correlation rs = 0.93) was found between the faecal coliform and E. coli counts for all sample types. The H2S method was poorly correlated whether read at 18 or 30 h. False positive rates were highest for well water, and false negative rates were highest for both well and drinking water samples, with low E. coli counts. The faecal coliform test was an excellent predictor of the presence of E. coli in these water samples, while the H2S test was very inadequate.
    Matched MeSH terms: Escherichia coli/isolation & purification*
  6. Loh LN, McCarthy EMC, Narang P, Khan NA, Ward TH
    Traffic, 2017 11;18(11):733-746.
    PMID: 28799243 DOI: 10.1111/tra.12508
    Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells.
    Matched MeSH terms: Escherichia coli/pathogenicity*; Escherichia coli/physiology
  7. Lim BN, Chin CF, Choong YS, Ismail A, Lim TS
    Toxicon, 2016 Jul;117:94-101.
    PMID: 27090555 DOI: 10.1016/j.toxicon.2016.04.032
    Antibody phage display is a useful tool for the isolation and identification of monoclonal antibodies. Naive antibody libraries are able to overcome the limitations associated with the traditional hybridoma method for monoclonal antibody generation. Antibody phage display is also a preferred method for antibody generation against toxins as it does not suffer from toxicity mediated complications. Here, we describe a naïve multi ethnic scFv antibody library generated via two-step cloning with an estimated diversity of 2 × 10(9). The antibody library was used to screen for monoclonal antibodies against Hemolysin E antigen, a pore forming toxin produced by Salmonella enterica serovar Typhi. A soluble monoclonal scFv antibody against the HlyE toxin (IgM scFv D7 anti-hlyE) was isolated from the library. This shows the value of the naïve library to generate antibodies against toxin targets in addition to the potential use of the library to isolate antibodies against other immunogenic targets.
    Matched MeSH terms: Escherichia coli Proteins/immunology*
  8. Ahmad NS, Abdullah N, Yasin FM
    Toxicol Rep, 2020;7:693-699.
    PMID: 32528857 DOI: 10.1016/j.toxrep.2020.04.015
    Toxicity effect of reduced graphene oxide (rGO) and titanium dioxide (TiO2) nanomaterials (NMs) on Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria was assessed. For both strains, study demonstrated that the toxicity was time and concentration dependent which led to reduction in growth rate and cell death. Upon NMs exposure, an instantaneous cell death in E. coli culture was observed. This is in contrast with B. subtilis, in which the culture growth remained in the log phase; however their growth rate constant,

    μ
    g

    was reduced by ∼70%. The discrepancy between E. coli and B. subtilis was due to strain-specific response upon contact with NMs. TEM, SEM and EDX analysis revealed direct physical surface-surface interaction, as evidence from the adherence of NMs on the cell surface.
    Matched MeSH terms: Escherichia coli
  9. Teh CS, Chua KH, Lim YA, Lee SC, Thong KL
    ScientificWorldJournal, 2014;2014:457839.
    PMID: 24967435 DOI: 10.1155/2014/457839
    We have successfully developed a Loop-mediated isothermal amplification (LAMP) assay that could specifically detect generic Escherichia coli (E. coli). This assay was tested on 85 bacterial strains and successfully identified 54 E. coli strains (average threshold time, Tt = 21.26). The sensitivity of this assay was evaluated on serial dilutions of bacterial cultures and spiked faeces. The assay could detect 10(2) CFU/mL for bacterial culture with Tt = 33.30 while the detection limit for spiked faeces was 10(3) CFU/mL (Tt = 31.12). We have also detected 46 generic E. coli from 50 faecal samples obtained from indigenous individuals with 16% of the positive samples being verocytotoxin-producing E. coli (VTEC) positive. VT1/VT2 allele was present in one faecal sample while the ratio of VT1 to VT2 was 6 : 1. Overall, our study had demonstrated high risk of VTEC infection among the indigenous community and most of the asymptomatic infection occurred among those aged below 15 years. The role of asymptomatic human carriers as a source of dissemination should not be underestimated. Large scale screening of the VTEC infection among indigenous populations and the potential contamination sources will be possible and easy with the aid of this newly developed rapid and simple LAMP assay.
    Matched MeSH terms: Escherichia coli/classification; Escherichia coli/genetics*; Escherichia coli Infections/diagnosis; Escherichia coli Infections/microbiology*; Shiga-Toxigenic Escherichia coli/classification; Shiga-Toxigenic Escherichia coli/genetics*
  10. Tan WS, Muhamad Yunos NY, Tan PW, Mohamad NI, Adrian TG, Yin WF, et al.
    ScientificWorldJournal, 2014;2014:828971.
    PMID: 25197715 DOI: 10.1155/2014/828971
    N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production using Chromobacterium violaceum CV026 and Escherichia coli [pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity to Pantoea stewartii S9-116, which is a plant pathogen. The isolated Pantoea sp. was confirmed to produce N-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry.
    Matched MeSH terms: Escherichia coli
  11. Umar KM, Abdulkarim SM, Radu S, Abdul Hamid A, Saari N
    ScientificWorldJournal, 2012;2012:529031.
    PMID: 22645428 DOI: 10.1100/2012/529031
    A mimicked biosynthetic pathway of catechin metabolite genes from C. sinensis, consisting of flavanone 3 hydroxylase (F3H), dihydroflavonol reductase (DFR), and leucoanthocyanidin reductase (LCR), was designed and arranged in two sets of constructs: (a) single promoter in front of F3H and ribosome-binding sequences both in front of DFR and LCR; (b) three different promoters with each in the front of the three genes and ribosome-binding sequences at appropriate positions. Recombinant E. coli BL (DE3) harbouring the constructs were cultivated for 65 h at 26 °C in M9 medium consisting of 40 g/L glucose, 1 mM IPTG, and 3 mM eriodictyol. Compounds produced were extracted in ethyl acetate in alkaline conditions after 1 h at room temperature and identified by HPLC. Two of the four major catechins, namely, (-)-epicatechin (0.01) and (-)-epicatechin gallate (0.36 mg/L), and two other types ((+)-catechin hydrate (0.13 mg/L) and (-)-catechin gallate (0.04 mg/L)) were successfully produced.
    Matched MeSH terms: Escherichia coli/genetics*; Escherichia coli/metabolism*
  12. Ang SS, Salleh AB, Chor LT, Normi YM, Tejo BA, Rahman MBA, et al.
    Protein J, 2018 04;37(2):180-193.
    PMID: 29508210 DOI: 10.1007/s10930-018-9764-z
    The bioconversion of vitamin D3 catalyzed by cytochrome P450 (CYP) requires 25-hydroxylation and subsequent 1α-hydroxylation to produce the hormonal activated 1α,25-dihydroxyvitamin D3. Vitamin D3 25-hydroxylase catalyses the first step in the vitamin D3 biosynthetic pathway, essential in the de novo activation of vitamin D3. A CYP known as CYP107CB2 has been identified as a novel vitamin D hydroxylase in Bacillus lehensis G1. In order to deepen the understanding of this bacterial origin CYP107CB2, its detailed biological functions as well as biochemical characteristics were defined. CYP107CB2 was characterized through the absorption spectral analysis and accordingly, the enzyme was assayed for vitamin D3 hydroxylation activity. CYP-ligand characterization and catalysis optimization were conducted to increase the turnover of hydroxylated products in an NADPH-regenerating system. Results revealed that the over-expressed CYP107CB2 protein was dominantly cytosolic and the purified fraction showed a protein band at approximately 62 kDa on SDS-PAGE, indicative of CYP107CB2. Spectral analysis indicated that CYP107CB2 protein was properly folded and it was in the active form to catalyze vitamin D3 reaction at C25. HPLC and MS analysis from a reconstituted enzymatic reaction confirmed the hydroxylated products were 25-hydroxyitamin D3 and 1α,25-dihydroxyvitamin D3 when the substrates vitamin D3 and 1α-hydroxyvitamin D3 were used. Biochemical characterization shows that CYP107CB2 performed hydroxylation activity at 25 °C in pH 8 and successfully increased the production of 1α,25-dihydroxyvitamin D3 up to four fold. These findings show that CYP107CB2 has a biologically relevant vitamin D3 25-hydroxylase activity and further suggest the contribution of CYP family to the metabolism of vitamin D3.
    Matched MeSH terms: Escherichia coli/genetics
  13. Ali MS, Yun CC, Chor AL, Rahman RN, Basri M, Salleh AB
    Protein J, 2012 Mar;31(3):229-37.
    PMID: 22350313 DOI: 10.1007/s10930-012-9395-8
    A mutant of the lipase from Geobacillus sp. strain T1 with a phenylalanine to leucine substitution at position 16 was overexpressed in Escherichia coli strain BL21(De3)pLysS. The crude enzyme was purified by two-step affinity chromatography with a final recovery and specific activity of 47.4 and 6,315.8 U/mg, respectively. The molecular weight of the purified F16L lipase was approximately 43 kDa by 12% SDS-PAGE analysis. The F16L lipase was demonstrated to be a thermophilic enzyme due its optimum temperature at 70 °C and showed stability over a temperature range of 40-60 °C. The enzyme exhibited an optimum pH 7 in phosphate buffer and was relatively stable at an alkaline pH 8-9. Metal ions such as Ca(2+), Mn(2+), Na(+), and K(+) enhanced the lipase activity, but Mg(2+), Zn(2+), and Fe(2+) inhibited the lipase. All surfactants tested, including Tween 20, 40, 60, 80, Triton X-100, and SDS, significantly inhibited the lipolytic action of the lipase. A high hydrolytic rate was observed on long-chain natural oils and triglycerides, with a notable preference for olive oil (C18:1; natural oil) and triolein (C18:1; triglyceride). The F16L lipase was deduced to be a metalloenzyme because it was strongly inhibited by 5 mM EDTA. Moderate inhibition was observed in the presence of PMSF at a similar concentration, indicating that serine residues are involved in its catalytic action. Further, the activity was not impaired by water-miscible solvents, including methanol, ethanol, and acetone.
    Matched MeSH terms: Escherichia coli/metabolism
  14. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Ong CE
    Protein J, 2011 Dec;30(8):581-91.
    PMID: 22001938 DOI: 10.1007/s10930-011-9365-6
    This study aimed to express two major drug-metabolizing human hepatic cytochromes P450 (CYPs), CYP2D6 and CYP3A4, together with NADPH-cytochrome P450 oxidoreductase (OxR) in Escherichia coli and to evaluate their catalytic activities. Full length cDNA clones of both isoforms in which the N-terminus was modified to incorporate bovine CYP17α sequence were inserted into a pCWori(+) vector. The modified CYP cDNAs were subsequently expressed individually, each together with OxR by means of separate, compatible plasmids with different antibiotic selection markers. The expressed proteins were evaluated by immunoblotting and reduced CO difference spectral scanning. Enzyme activities were examined using high performance liquid chromatography (HPLC) assays with probe substrates dextromethorphan and testosterone for CYP2D6 and CYP3A4, respectively. Results from immunoblotting demonstrated the presence of both CYP proteins in bacterial membranes and reduced CO difference spectra of the cell preparations exhibited the characteristic absorbance peak at 450 nm. Co-expressed OxR also demonstrated an activity level comparable to literature values. Kinetic parameters, K(m) and V(max) values determined from the HPLC assays also agreed well with literature values. As a conclusion, the procedures described in this study provide a relatively convenient and reliable means of producing catalytically active CYP isoforms suitable for drug metabolism and interaction studies.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  15. Kamarudin NH, Rahman RN, Ali MS, Leow TC, Basri M, Salleh AB
    Protein J, 2014 Jun;33(3):296-307.
    PMID: 24777627 DOI: 10.1007/s10930-014-9560-3
    The gene encoding a cold-adapted, organic solvent stable lipase from a local soil-isolate, mesophilic Staphylococcus epidermidis AT2 was expressed in a prokaryotic system. A two-step purification of AT2 lipase was achieved using butyl sepharose and DEAE sepharose column chromatography. The final recovery and purification fold were 47.09 % and 3.45, respectively. The molecular mass of the purified lipase was estimated to be 43 kDa. AT2 lipase was found to be optimally active at pH 8 and stable at pH 6-9. Interestingly, this enzyme demonstrated remarkable stability at cold temperature (<30 °C) and exhibited optimal activity at a temperature of 25 °C. A significant enhancement of the lipolytic activity was observed in the presence of Ca(2+), Tween 60 and Tween 80. Phenylmethylsulfonylfluoride, a well known serine inhibitor did not cause complete inhibition of the enzymatic activity. AT2 lipase exhibited excellent preferences towards long chain triglycerides and natural oils. The lipolytic activity was stimulated by dimethylsulfoxide and diethyl ether, while more than 50 % of its activity was retained in methanol, ethanol, acetone, toluene, and n-hexane. Taken together, AT2 lipase revealed highly attractive biochemical properties especially because of its stability at low temperature and in organic solvents.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  16. Kalhori N, Nulit R, Go R
    Protein J, 2013 Oct;32(7):551-9.
    PMID: 24132392 DOI: 10.1007/s10930-013-9516-z
    Pentose phosphate pathway (PPP) composed of two functionally-connected phases, the oxidative and non-oxidative phase. Both phases catalysed by a series of enzymes. Transketolase is one of key enzymes of non-oxidative phase in which transfer two carbon units from fructose-6-phosphate to erythrose-4-phosphate and convert glyceraldehyde-3-phosphate to xylulose-5-phosphate. In plant, erythrose-4-phosphate enters the shikimate pathway which is produces many secondary metabolites such as aromatic amino acids, flavonoids, lignin. Although transketolase in plant system is important, study of this enzyme is still limited. Until to date, TKT genes had been isolated only from seven plants species, thus, the aim of present study to isolate, study the similarity and phylogeny of transketolase from sugarcane. Unlike bacteria, fungal and animal, PPP is complete in the cytosol and all enzymes are found cytosolic. However, in plant, the oxidative phase found localised in the cytosol but the sub localisation for non-oxidative phase might be restricted to plastid. Thus, this study was conducted to determine subcellular localization of sugarcane transketolase. The isolation of sugarcane TKT was done by reverse transcription polymerase chain reaction, followed by cloning into pJET1.2 vector and sequencing. This study has isolated 2,327 bp length of sugarcane TKT. The molecular phylogenetic tree analysis found that transketolase from sugarcane and Zea mays in one group. Classification analysis found that both plants showed closer relationship due to both plants in the same taxon i.e. family Poaceae. Target P 1.1 and Chloro P predicted that the compartmentation of sugarcane transketolase is localised in the chloroplast which is 85 amino acids are plant plastid target sequence. This led to conclusion that the PPP is incomplete in the cytosol of sugarcane. This study also found that the similarity sequence of sugarcane TKT closely related with the taxonomy plants.
    Matched MeSH terms: Escherichia coli
  17. Ali MS, Ganasen M, Rahman RN, Chor AL, Salleh AB, Basri M
    Protein J, 2013 Apr;32(4):317-25.
    PMID: 23645400 DOI: 10.1007/s10930-013-9488-z
    A new strain of psychrophilic bacteria (designated strain AMS8) from Antarctic soil was screened for extracellular lipolytic activity and further analyzed using molecular approach. Analysis of 16S rDNA showed that strain AMS8 was similar to Pseudomonas sp. A lipase gene named lipAMS8 was successfully isolated from strain AMS8, cloned, sequenced and overexpressed in Escherichia coli. Sequence analysis revealed that lipAMS8 consist of 1,431 bp nucleotides that encoded a polypeptide consisting of 476 amino acids. It lacked an N-terminal signal peptide and contained a glycine- and aspartate-rich nonapeptide sequence at the C-terminus, which are known to be the characteristics of repeats-in-toxin bacterial lipases. Furthermore, the substrate binding site of lipAMS8 was identified as S(207), D(255) and H(313), based on homology modeling and multiple sequence alignment. Crude lipase exhibited maximum activity at 20 °C and retained almost 50 % of its activity at 10 °C. The molecular weight of lipAMS8 was estimated to be 50 kDa via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal expression level was attained using the recombinant plasmid pET32b/BL21(DE3) expressed at 15 °C for 8 h, induced by 0.1 mM isopropyl β-D thiogalactoside (IPTG) at E. coli growth optimal density of 0.5.
    Matched MeSH terms: Escherichia coli/genetics; Escherichia coli/metabolism
  18. Tan MS, Teh YH, Ho KL, Stanslas J
    Protein J, 2020 02;39(1):54-61.
    PMID: 31620959 DOI: 10.1007/s10930-019-09872-1
    Being an important regulator of cell growth and survival, a point mutation at glycine-12 residue of Kras4B to valine (V), renders Kras4BG12V oncogenic. Kras4B recombinant protein is used as a bait to fish its potential ligands in the attempt of drugging this oncoprotein and to validate its pharmacologically relevant ligand in protein-ligand interaction studies. Nevertheless, synthesis of Kras4B recombinant protein is challenging as it was reported being susceptible to aggregation into inclusion bodies in the bacterial host, resulting in a poor yield of recombinant protein. Here, we describe a novel method to produce native Kras4BG12V protein by using pET SUMO protein expression system as a solution to the formation of inclusion bodies. Kras4BG12V oncogene was cloned into pET SUMO vector, followed by a 12 h chemically induced protein expression in Escherichia coli at 20 °C. Native Kras4BG12V protein was produced in a series of protein purification steps involving immobilised nickel ion-affinity column chromatography, SUMO fusion protein and polyhistidine tag removal, and size exclusion column chromatography. The identity of the purified Kras4BG12V protein was validated by immunoblot analysis. The purified protein exhibited self-dimerising, indicating that the purified protein structurally resembles Kras4B. Its physical interaction with 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI), a known binder of Kras4B, confirms the identity of the purified protein as Kras4BG12V. The native Kras4BG12V protein was successfully purified in a substantial amount by using the pET SUMO protein expression system.
    Matched MeSH terms: Escherichia coli/genetics
  19. Radu S, Rusul G, Ling OW, Purwati E, Mustakim M, Lihan S
    PMID: 11023069
    This study has evaluated the use of a commercially available Rainbow agar O157 and polymerase chain reaction (PCR) assays for the detection of Shiga-like toxin producing Escherichia coli and to serotype E. coli O157:H7 from raw meat. The Rainbow agar O157 was found to be selective and sensitive for the screening of the E. coli O157 from artificially and naturally contaminated meat samples. Shiga-like toxin producing E. coli were identified with two primer pairs that amplified fragments of the SLT-I (384 bp) and SLT-II (584 bp). E. coli O157:H7 was serotyped with a primer pair specified for the H7 flagellar gene, which amplify specific DNA fragments (625 bp) from all E. coli O157:H7 strains. The use of Rainbow agar O157 described allows for the presumptive isolation of E. coli O157 in 24 hours. Identification and confirmation of the presumptive isolates as E. coli O157:H7 by PCR assays require additional 6-8 hours. The above-mentioned screening and identification procedures should prove to be a very useful method since it allows for the specific detection of E. coli O157:H7.
    Matched MeSH terms: Escherichia coli O157/isolation & purification*
  20. Norazah A, Rahizan I, Zainuldin T, Rohani MY, Kamel AG
    PMID: 9740276
    A total of 402 Escherichia coli isolates were obtained from a variety of food samples and screened for enteropathogenic E. coli (EPEC). Screening was carried out using 15 specific monovalent antisera from Murex Diagnostic Limited. A total of 19 E. coli isolates were serotyped as EPEC. The EPEC strains were shown to belong to 8 serotypes. Eight out of 19 EPEC strains belonged to serotype 018C:K77 (B21). Seventeen out of 19 of the EPEC strains were isolated from cooked food. The presence of E. coli in cooked food is an indicator of fecal contamination and a sign of unhygienic food handling. The presence of EPEC in food could be a potential source of food-borne outbreak. Hygiene training for every food-handler is a necessity.
    Matched MeSH terms: Escherichia coli/classification; Escherichia coli/pathogenicity*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links