Displaying publications 41 - 60 of 157 in total

Abstract:
Sort:
  1. Fakurazi S, Sharifudin SA, Arulselvan P
    Molecules, 2012 Jul 10;17(7):8334-50.
    PMID: 22781444 DOI: 10.3390/molecules17078334
    The aim of the study was to investigate the in vitro antioxidant properties Moringa oleifera Lam. (MO) extracts and its curative role in acetaminophen (APAP)-induced toxic liver injury in rats caused by oxidative damage. The total phenolic content and antioxidant properties of hydroethanolic extracts of different MO edible parts were investigated by employing an established in vitro biological assay. In the antihepatotoxic study, either flowers or leaves extract (200 mg/kg or 400 mg/kg, i.p) were administered an hour after APAP administration, respectively. N-Acetylcysteine was used as the positive control against APAP-induced hepatotoxicity. The levels of liver markers such as alanine aminotransferase (ALT) and the levels of oxidative damage markers including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE) protein adduct, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were analysed and compared between experimental groups. Among MO edible parts the flower extracts contain the highest total phenolic content and antioxidant capacity, followed by leaves extract. The oxidative marker MDA, as well as 4-HNE protein adduct levels were elevated and GSH, SOD and CAT were significantly decreased in groups treated with hepatotoxin. The biochemical liver tissue oxidative markers measured in the rats treated with MO flowers and leaves hydroethanolic extracts showed a significant (p < 0.05) reduction in the severity of the liver damage. The results of this study strongly indicate the therapeutic properties of MO hydroethanolic extracts against acute liver injury and thereby scientifically support its traditional use.
    Matched MeSH terms: Free Radical Scavengers/pharmacology
  2. Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, et al.
    Sci Rep, 2021 11 09;11(1):21969.
    PMID: 34753977 DOI: 10.1038/s41598-021-01281-8
    The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (- 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
    Matched MeSH terms: Free Radical Scavengers/pharmacology
  3. Ghasemzadeh A, Nasiri A, Jaafar HZ, Baghdadi A, Ahmad I
    Molecules, 2014 Oct 30;19(11):17632-48.
    PMID: 25361426 DOI: 10.3390/molecules191117632
    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against HeLa cancer cells with IC50 value of 56.8 µg/mL. These results indicate that early harvesting of snake grass (6-month-old) may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  4. Ghasemzadeh A, Jaafar HZ, Juraimi AS, Tayebi-Meigooni A
    Molecules, 2015 Jun 11;20(6):10822-38.
    PMID: 26111171 DOI: 10.3390/molecules200610822
    Secondary metabolite contents (total phenolic, flavonoid, tocopherol, and tocotrienol) and antioxidant activities of Hashemi rice bran extracts obtained by ultrasound-assisted and traditional solvent (ethanol and 50:50 (v/v) ethanol-water) extraction techniques were compared. Phenolic and, flavonoid compounds were identified using ultra-high performance liquid chromatography and method validation was performed. Significant differences (p < 0.05) were observed among the different extraction techniques upon comparison of phytochemical contents and antioxidant activities. The extracts obtained using the ethanol-water (50:50 v/v) ultrasonic technique showed the highest amounts of total phenolics (288.40 mg/100 g dry material (DM)), total flavonoids (156.20 mg/100 g DM), and total tocotrienols (56.23 mg/100 g DM), and the highest antioxidant activity (84.21% 1,1-diphenyl-2-picrylhydrazyl (DPPH), 65.27% β-carotene-linoleic bleaching and 82.20% nitric oxide scavenging activity). Secondary metabolite contents and antioxidant activities of the rice bran extracts varied depending of the extraction method used, and according to their effectiveness, these were organized in a decreasing order as follows: ethanol-water (50:50 v/v) ultrasonic, ethanol-water (50:50 v/v) maceration, ethanol ultrasonic and ethanol maceration methods. Ferulic, gallic and chlorogenic acids were the most abundant phenolic compounds in rice bran extracts. The phytochemical constituents of Hashemi rice bran and its antioxidant properties provides insights into its potential application to promote health.
    Matched MeSH terms: Free Radical Scavengers/chemistry
  5. Ghasemzadeh A, Baghdadi A, Z E Jaafar H, Swamy MK, Megat Wahab PE
    Molecules, 2018 Jul 26;23(8).
    PMID: 30049990 DOI: 10.3390/molecules23081863
    Recently, the quality-by-design concept has been widely implemented in the optimization of pharmaceutical processes to improve batch-to-batch consistency. As flavonoid compounds in pigmented rice bran may provide natural antioxidants, extraction of flavonoid components from red and brown rice bran was optimized using central composite design (CCD) and response surface methodology (RSM). Among the solvents tested, ethanol was most efficient for extracting flavonoids from rice bran. The examined parameters were temperature, solvent percentage, extraction time, and solvent-to-solid ratio. The highest total flavonoid content (TFC) in red rice bran was predicted as 958.14 mg quercetin equivalents (QE)/100 g dry matter (DM) at 58.5 °C, 71.5% (v/v), 36.2 min, and 7.94 mL/g, respectively, whereas the highest TFC in brown rice bran was predicted as 782.52 mg QE/100 g DM at 56.7 °C, 74.4% (v/v), 36.9 min, and 7.18 mL/g, respectively. Verification experiment results under these optimized conditions showed that the TFC values for red and brown rice bran were 962.38 and 788.21 mg QE/100 g DM, respectively. No significant differences were observed between the predicted and experimental TFC values, indicating that the developed models are accurate. Analysis of the extracts showed that apigenin and p-coumaric acid are abundant in red and brown rice bran. Further, red rice bran with its higher flavonoid content exhibited higher nitric oxide and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (EC50 values of 41.3 and 33.6 μg/mL, respectively) than brown rice bran. In this study, an extraction process for flavonoid compounds from red and brown rice bran was successfully optimized. The accuracy of the developed models indicated that the approach is applicable to larger-scale extraction processes.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  6. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2010 Nov 03;15(11):7907-22.
    PMID: 21060298 DOI: 10.3390/molecules15117907
    Zingiber officinale Roscoe. (Family Zingiberaceae) is well known in Asia. The plant is widely cultivated in village gardens in the tropics for its medicinal properties and as a marketable spice in Malaysia. Ginger varieties are rich in physiologically active phenolics and flavonoids with a range of pharmacological activities. Experiments were conducted to determine the feasibility of increasing levels of flavonoids (quercetin, rutin, catechin, epicatechin, kaempferol, naringenin, fisetin and morin) and phenolic acid (gallic acid, vanillic acid, ferulic acid, tannic acid, cinnamic acid and salicylic acid), and antioxidant activities in different parts of Malaysian young ginger varieties (Halia Bentong and Halia Bara) with CO(2) enrichment in a controlled environment system. Both varieties showed an increase in phenolic compounds and flavonoids in response to CO(2) enrichment from 400 to 800 µmol mol-1 CO(2). These increases were greater in rhizomes compared to leaves. High performance liquid chromatography (HPLC) results showed that quercetin and gallic acid were the most abundant flavonoid and phenolic acid in Malaysian young ginger varieties. Under elevated CO(2) conditions, kaempferol and fisetin were among the flavonoid compounds, and gallic acid and vanillic acid were among the phenolic compounds whose levels increased in both varieties. As CO(2) concentration was increased from 400 to 800 µmol mol-1, free radical scavenging power (DPPH) increased about 30% in Halia Bentong and 21.4% in Halia Bara; and the rhizomes exhibited more enhanced free radical scavenging power, with 44.9% in Halia Bentong and 46.2% in Halia Bara. Leaves of both varieties also displayed good levels of flavonoid compounds and antioxidant activities. These results indicate that the yield and pharmaceutical quality of Malaysian young ginger varieties can be enhanced by controlled environment production and CO(2) enrichment.
    Matched MeSH terms: Free Radical Scavengers
  7. Grace-Lynn C, Darah I, Chen Y, Latha LY, Jothy SL, Sasidharan S
    Molecules, 2012 Sep 19;17(9):11185-98.
    PMID: 22992785
    Lantadenes are pentacyclic triterpenoids present in the leaves of the plant Lantana camara. In the present study, in vitro antioxidant activity and free radical scavenging capacity of lantadene A was evaluated using established in vitro models such as ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), hydroxyl radical (OH•), nitric oxide radical (NO•), superoxide anion scavenging activities and ferrous ion chelating assay. Interestingly, lantadene A showed considerable in vitro antioxidant, free radical scavenging capacity activities in a dose dependant manner when compared with the standard antioxidant in nitric oxide scavenging, superoxide anion radical scavenging and ferrous ion chelating assay. These findings show that the lantadene A possesses antioxidant activity with different mechanism of actions towards the different free radicals tested. Since lantadene A is a very popular drug in modern medicine, it is a promising candidate for use as an antioxidant and hepatoprotective agent.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/toxicity; Free Radical Scavengers/chemistry
  8. Gwaram NS, Ali HM, Abdulla MA, Buckle MJ, Sukumaran SD, Chung LY, et al.
    Molecules, 2012 Feb 28;17(3):2408-27.
    PMID: 22374313 DOI: 10.3390/molecules17032408
    Alzheimer's disease (AD) is the most common form of dementia among older people and the pathogenesis of this disease is associated with oxidative stress. Acetylcholinesterase inhibitors with antioxidant activities are considered potential treatments for AD. Some novel ketone derivatives of gallic hydrazide-derived Schiff bases were synthesized and examined for their antioxidant activities and in vitro and in silico acetyl cholinesterase inhibition. The compounds were characterized using spectroscopy and X-ray crystallography. The ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays revealed that all the compounds have strong antioxidant activities. N-(1-(5-bromo-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (2) was the most potent inhibitor of human acetyl cholinesterase, giving an inhibition rate of 77% at 100 μM. Molecular docking simulation of the ligand-enzyme complex suggested that the ligand may be positioned in the enzyme's active-site gorge, interacting with residues in the peripheral anionic subsite (PAS) and acyl binding pocket (ABP). The current work warrants further preclinical studies to assess the potential for these novel compounds for the treatment of AD.
    Matched MeSH terms: Free Radical Scavengers/chemical synthesis*; Free Radical Scavengers/chemistry
  9. Haleagrahara N, Julian V, Chakravarthi S
    Cardiovasc Toxicol, 2011 Dec;11(4):373-81.
    PMID: 21796404 DOI: 10.1007/s12012-011-9132-0
    This study investigated the cardioprotective effect of N-acetylcysteine (NAC) on isoproterenol (ISO)-induced cardiotoxicity in rats. Male Sprague-Dawley rats were divided into control, NAC alone (100 mg/kg BW orally for 14 days), ISO-control (85 mg/kg BW), and ISO with NAC (for 14 days). Serum creatine kinase-MB and Lactate dehydrogenase were measured. From the heart homogenate lipid hydroperoxides (LPO), superoxide dismutase (SOD), total glutathione (GSH), and 8-isoprostane (IP) were measured. Histopathological examination of the heart was also carried out. There was a significant increase (P free radicals-induced damage to the myocardium.
    Matched MeSH terms: Free Radical Scavengers/pharmacology*
  10. Hamdan M, Jones KT, Cheong Y, Lane SI
    Sci Rep, 2016 11 14;6:36994.
    PMID: 27841311 DOI: 10.1038/srep36994
    Mouse oocytes respond to DNA damage by arresting in meiosis I through activity of the Spindle Assembly Checkpoint (SAC) and DNA Damage Response (DDR) pathways. It is currently not known if DNA damage is the primary trigger for arrest, or if the pathway is sensitive to levels of DNA damage experienced physiologically. Here, using follicular fluid from patients with the disease endometriosis, which affects 10% of women and is associated with reduced fertility, we find raised levels of Reactive Oxygen Species (ROS), which generate DNA damage and turn on the DDR-SAC pathway. Only follicular fluid from patients with endometriosis, and not controls, produced ROS and damaged DNA in the oocyte. This activated ATM kinase, leading to SAC mediated metaphase I arrest. Completion of meiosis I could be restored by ROS scavengers, showing this is the primary trigger for arrest and offering a novel clinical therapeutic treatment. This study establishes a clinical relevance to the DDR induced SAC in oocytes. It helps explain how oocytes respond to a highly prevalent human disease and the reduced fertility associated with endometriosis.
    Matched MeSH terms: Free Radical Scavengers/pharmacology
  11. Hamid ZA, Tan HY, Chow PW, Harto KAW, Chan CY, Mohamed J
    Sultan Qaboos Univ Med J, 2018 May;18(2):e130-e136.
    PMID: 30210840 DOI: 10.18295/squmj.2018.18.02.002
    Objectives: The ex vivo maintenance of haematopoietic stem/progenitor cells (HSPCs) is crucial to ensure a sufficient supply of functional cells for research or therapeutic applications. However, when exposed to reactive oxygen species (ROS) in a normoxic microenvironment, HSPCs exhibit genomic instability which may diminish their quantity and quality. This study aimed to investigate the role of N-acetylcysteine (NAC) supplementation on the oxidative stress levels, genotoxicity and lineage commitment potential of murine haematopoietic stem/progenitor cells (HSPCs).

    Methods: This study was carried out at the Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia, between June 2016 and July 2017. Bone marrow cells were isolated from nine mice and cultured in a growth medium. Various concentrations of NAC between 0.125-2 μM were added to the culture for 48 hours; these cells were then compared to non-supplemented cells harvested from the remaining three mice as the control group. A trypan blue exclusion test was performed to determine cell viability, while intracellular ROS levels and genotoxicity were determined by hydroethidine staining and comet assay, respectively. The lineage commitment potential of erythroid, myeloid and pre-B-lymphoid progenitor cells was evaluated via colony-forming cell assay.

    Results: NAC supplementation at 0.25, 0.5 and 2 μM significantly increased cell viability (P <0.050), while intracellular ROS levels significantly decreased at 0.25 and 0.5 μM (P <0.050). Moreover, DNA damage was significantly reduced at all NAC concentrations (P <0.050). Finally, the potential lineage commitment of the cells was not significantly affected by NAC supplementation (P >0.050).

    Conclusion: The findings of this study indicate that NAC supplementation may potentially overcome the therapeutic limitations of ex vivo-maintained HSPCs.

    Matched MeSH terms: Free Radical Scavengers/pharmacology*
  12. Hashim N, Rahmani M, Sukari MA, Ali AM, Alitheen NB, Go R, et al.
    J Asian Nat Prod Res, 2010 Feb;12(2):106-12.
    PMID: 20390751 DOI: 10.1080/10286020903450411
    Two new xanthones, pyranocycloartobiloxanthone A (1) and dihydroartoindonesianin C (2), were isolated from the stem bark of Artocarpus obtusus Jarrett by chromatographic separation. Their structures were determined by using spectroscopic methods and comparison with known related compounds. Pyranocycloartobiloxanthone A (1) showed strong free radical scavenging activity by using DPPH assay as well as cytotoxicity towards K562, HL-60, and MCF7 cell lines.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification*; Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  13. Hassan FA, Ismail A, Abdulhamid A, Azlan A
    J Agric Food Chem, 2011 Sep 14;59(17):9102-11.
    PMID: 21800901 DOI: 10.1021/jf201270n
    Phenolic compounds and antioxidant capacity of acidified methanolic extract prepared from fully ripe bambangan (Mangifera pajang K.) peel cultivated in Sarawak, Malaysia, were analyzed. The total phenolic content (98.3 mg GAE/g) of bambangan peel powder (BPP) was determined by the Folin-Ciocalteu method. BPP showed a strong potency of antioxidant activity and was consistent with that of BHT and vitamin C as confirmed by the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and FRAP (ferric-reducing antioxidant power) assays. Gallic acid, p-coumaric acid, ellagic acid, protocatechuic acid, and mangiferin were the major compounds among the 16 phenolics that have been identified and quantified in M. pajang peels with 20.9, 12.7, 7.3, 5.4, and 4.8 mg/g BPP, respectively. Peak identities were confirmed by comparing their retention times, UV-vis absorption spectra, and mass spectra with authentic standards. The 16 phenolic compounds identified in M. pajang K. using HPLC-DAD and TSQ-ESI-MS are reported here for the first time.
    Matched MeSH terms: Free Radical Scavengers/pharmacology*
  14. Ho SK, Tan CP, Thoo YY, Abas F, Ho CW
    Molecules, 2014 Aug 19;19(8):12640-59.
    PMID: 25153876 DOI: 10.3390/molecules190812640
    Ultrasound-assisted extraction (UAE) with ethanol was used to extract the compounds responsible for the antioxidant activities of Misai Kucing (Orthosiphon stamineus). Response surface methodology (RSM) was used to optimize four independent variables: ethanol concentration (%), amplitude (%), duty cycle (W/s) and extraction time (min). Antioxidant compounds were determined by total phenolic content and total flavonoid content to be 1.4 g gallic acid equivalent/100 g DW and 45 g catechin equivalent/100 g DW, respectively. Antioxidant activities were evaluated using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical scavenging capacity assay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging capacity assay to be 1,961.3 and 2,423.3 µmol Trolox Equivalent Antioxidant Capacity (TEAC)/100 g DW, respectively. Based on the optimal conditions, experimental values were reported to be close to the predicted value by RSM modeling (p>0.05), indicating the suitability of UAE for extracting the antioxidants of Misai Kucing. Rosmarinic acid, kaempferol-rutinoside and sinesetine were identified by high performance liquid chromatography-mass spectrometry.
    Matched MeSH terms: Free Radical Scavengers/isolation & purification*; Free Radical Scavengers/chemistry
  15. Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A
    Molecules, 2013 Sep 05;18(9):10973-88.
    PMID: 24013410 DOI: 10.3390/molecules180910973
    A study was conducted to compare secondary metabolites and antioxidant activity of Labisia pumila Benth (Kacip Fatimah) in response to two sources of fertilizer [i.e., organic (chicken dung; 10% N:10% P₂O₅:10% K₂O) and inorganic fertilizer (NPK green; 15% N, 15% P₂O₅, 15% K₂O)] under different N rates of 0, 90, 180 and 270 kg N/ha. The experiment was arranged in a randomized complete block design replicated three times. At the end of 15 weeks, it was observed that the application of organic fertilizer enhanced the production of total phenolics, flavonoids, ascorbic acid, saponin and gluthathione content in L. pumila, compared to the use of inorganic fertilizer. The nitrate content was also reduced under organic fertilization. The application of nitrogen at 90 kg N/ha improved the production of secondary metabolites in Labisia pumila. Higher rates in excess of 90 kg N/ha reduced the level of secondary metabolites and antioxidant activity of this herb. The DPPH and FRAP activity was also highest at 90 kg N/ha. The results indicated that the use of chicken dung can enhance the production of secondary metabolites and improve antioxidant activity of this herb.
    Matched MeSH terms: Free Radical Scavengers/metabolism*; Free Radical Scavengers/chemistry
  16. Ibrahim MH, Chee Kong Y, Mohd Zain NA
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023367 DOI: 10.3390/molecules22101623
    A randomized complete block (RCBD) study was designed to investigate the effects of cadmium (Cd) and copper (Cu) on the growth, bioaccumulation of the two heavy metals, metabolite content and antibacterial activities in Gyanura procumbens (Lour.) Merr. Nine treatments including (1) control (no Cd and Cu); (2) Cd 2 = cadmium 2 mg/L; (3) Cd 4 = cadmium 4 mg/L; (4) Cu 70 = copper 70 mg/L; (5) Cu 140 = copper 140 mg/L); (6) Cd 2 + Cu 70 = cadmium 2 mg/L + copper 70 mg/L); (7) Cd 2 + Cu 140 = cadmium 2 mg/L + copper 70 mg/L); (8) Cd 4 + Cu 70 = cadmium 4 mg/L+ copper 70 mg/L and (9) Cd 4 + Cu 140 = cadmium 4 mg/L + copper 140 mg/L) were evaluated in this experiment. It was found that the growth parameters (plant dry weight, total leaf area and basal diameter) were reduced with the exposure to increased concentrations of Cd and Cu and further decreased under interaction between Cd and Cu. Production of total phenolics, flavonoids and saponin was observed to be reduced under combined Cd and Cu treatment. The reduction in the production of plant secondary metabolites might be due to lower phenyl alanine lyase (PAL) activity under these conditions. Due to that, the 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant potential (FRAP) and antibacterial activities was also found to be reduced by the combined treatments. The current experiments show that the medicinal properties of G. procumbens are reduced by cadmium and copper contamination. The accumulation of heavy metal also was found to be higher than the safety level recommended by the WHO in the single and combined treatments of Cd and Cu. These results indicate that exposure of G. procumbens to Cd and Cu contaminated soil may potentially harm consumers due to bioaccumulation of metals and reduced efficacy of the herbal product.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  17. Ibrahim MM, Al-Refai M, Al-Fawwaz A, Ali BF, Geyer A, Harms K, et al.
    J Fluoresc, 2018 Mar;28(2):655-662.
    PMID: 29680927 DOI: 10.1007/s10895-018-2227-2
    Furopyridine III, namely 1-(3-amino-4-(4-(tert-butyl)phenyl)-6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one, synthesized from 4-(4-(tert-butyl)phenyl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile I in two steps. The title compound is characterized by NMR, MS and its X-ray structure. The molecular structure consists of planar furopyridine ring with both phenyl rings being inclined from the furopyridine scaffold to a significant different extent. There are three intramolecular hydrogen bonds within the structure. The lattice is stabilized by N-H…O, H2C-H …π and π…π intermolecular interactions leading to three-dimensional network. Compound III exhibits fluorescent properties, which are investigated. Antimicrobial potential and antioxidant activity screening studies for the title compound III and the heterocyclic derivatives, I and II, show no activity towards neither bacterial nor fungal strains, while they exhibited weak to moderate antioxidant activity compared to reference.
    Matched MeSH terms: Free Radical Scavengers/chemical synthesis; Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
  18. Imam MU, Musa SN, Azmi NH, Ismail M
    Int J Mol Sci, 2012;13(10):12952-69.
    PMID: 23202932 DOI: 10.3390/ijms131012952
    Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations instead of the commonly consumed WR that is known to promote oxidative stress. This will then provide further reasons why less consumption of WR should be encouraged. We studied the effects of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our results provide insight into the effects of different rice types on antioxidant status in type 2 diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may worsen antioxidant status that may lead to more damage by free radicals. From the data so far, the antioxidant effects of BR and GBR are worth studying further especially on a long term to determine their effects on development of oxidative stress-related problems, which WR consumption predisposes to.
    Matched MeSH terms: Free Radical Scavengers/metabolism
  19. Indran M, Mahmood AA, Kuppusamy UR
    West Indian Med J, 2008 Sep;57(4):323-6.
    PMID: 19566009
    The effects of Carica papaya leaf (CPL) aqueous extract on alcohol induced acute gastric damage and the immediate blood oxidative stress level were studied in rats. The results showed that gastric ulcer index was significantly reduced in rats pretreated with CPL extract as compared with alcohol treated controls. The in vitro studies using 2,2-Diphenyl-1-Picryl-Hydrazyl (DPPH) assay showed strong antioxidant nature of CPL extract. Biochemical analysis indicated that the acute alcohol induced damage is reflected in the alterations of blood oxidative indices and CPL extract offered some protection with reduction in plasma lipid peroxidation level and increased erythrocyte glutathione peroxidase activity. Carica papaya leaf may potentially serve as a good therapeutic agent for protection against gastric ulcer and oxidative stress.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/therapeutic use
  20. Islam MK, Biswas NN, Saha S, Hossain H, Jahan IA, Khan TA, et al.
    ScientificWorldJournal, 2014;2014:869537.
    PMID: 24707219 DOI: 10.1155/2014/869537
    Different parts of the medicinal plant Zanthoxylum budrunga Wall enjoy a variety of uses in ethnobotanical practice in Bangladesh. In the present study, a number of phytochemical and pharmacological investigations were done on the ethanol extract of Z. budrunga seeds (ZBSE) to evaluate its antinociceptive and antioxidant potential. ZBSE was also subjected to HPLC analysis to detect the presence of some common antioxidants. In acetic acid induced writhing test in mice, ZBSE showed 65.28 and 74.30% inhibition of writhing at the doses of 250 and 500 mg/kg and the results were statistically significant (P < 0.001). In hot-plate test, ZBSE raised the pain threshold significantly (P < 0.001) throughout the entire observation period. In DPPH scavenging assay, the IC50 of ZBSE was observed at 82.60 μg/mL. The phenolic content was found to be 338.77 mg GAE/100 g of dried plant material. In reducing power assay, ZBSE showed a concentration dependent reducing ability. HPLC analysis indicated the presence of caffeic acid with a concentration of 75.45 mg/100 g ZBSE. Present investigation supported the use of Zanthoxylum budrunga seed in traditional medicine for pain management. Constituents including caffeic acid and other phenolics might have some role in the observed activity.
    Matched MeSH terms: Free Radical Scavengers/pharmacology; Free Radical Scavengers/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links