Displaying publications 41 - 47 of 47 in total

Abstract:
Sort:
  1. Sudi IY, Shamsir MS, Jamaluddin H, Wahab RA, Huyop F
    Biotechnology, biotechnological equipment, 2014 Sep 03;28(5):949-957.
    PMID: 26019583
    The D-2-haloacid dehalogenase of D-specific dehalogenase (DehD) from Rhizobium sp. RC1 catalyses the hydrolytic dehalogenation of D-haloalkanoic acids, inverting the substrate-product configuration and thereby forming the corresponding L-hydroxyalkanoic acids. Our investigations were focused on DehD mutants: R134A and Y135A. We examined the possible interactions between these mutants with haloalkanoic acids and characterized the key catalytic residues in the wild-type dehalogenase, to design dehalogenase enzyme(s) with improved potential for dehalogenation of a wider range of substrates. Three natural substrates of wild-type DehD, specifically, monochloroacetate, monobromoacetate and D,L-2,3-dichloropropionate, and eight other non-natural haloalkanoic acids substrates of DehD, namely, L-2-chloropropionate; L-2-bromopropionate; 2,2-dichloropropionate; dichloroacetate; dibromoacetate; trichloroacetate; tribromoacetate; and 3-chloropropionate, were docked into the active site of the DehD mutants R134A and Y135A, which produced altered catalytic functions. The mutants interacted strongly with substrates that wild-type DehD does not interact with or degrade. The interaction was particularly enhanced with 3-chloropropionate, in addition to monobromoacetate, monochloroacetate and D,L-2,3-dichloropropionate. In summary, DehD variants R134A and Y135A demonstrated increased propensity for binding haloalkanoic acid and were non-stereospecific towards halogenated substrates. The improved characteristics in these mutants suggest that their functionality could be further exploited and harnessed in bioremediations and biotechnological applications.
    Matched MeSH terms: Hydrocarbons, Chlorinated
  2. Tan GH
    Analyst, 1992 Jul;117(7):1129-32.
    PMID: 1524230
    Solid-phase extraction (SPE) of organochlorine pesticide residues from environmental water samples was evaluated using octadecyl (C18)-bonded porous silica. The efficiency of SPE of these pesticide residues from reagent water samples at 1-5 micrograms dm-3 levels was compared with those obtained by solvent extraction with hexane and Freon TF (trichlorotrifluoroethane). Average recoveries exceeding 80% for these organochlorine pesticides were obtained via the SPE method using small cartridges containing 100 mg of 40 microns C18-bonded porous silica. The average recovery by solvent extraction with hexane and Freon TF exceeded 90% in both instances. It was concluded that the recoveries and precision for the SPE of organochlorine pesticides were poorer than those for the solvent extraction method. Organochlorine pesticide residue levels in environmental water samples from two major rivers flowing through predominantly rice-growing areas were monitored by gas chromatography using the solvent extraction method with hexane. Exceptionally high levels of organochlorine pesticide residues such as BHC, DDT, heptachlor, endosulfan and dieldrin were found in these water samples.
    Matched MeSH terms: Hydrocarbons, Chlorinated*
  3. Tan GH, Vijayaletchumy K
    Bull Environ Contam Toxicol, 1994 Sep;53(3):351-6.
    PMID: 7919710
    Matched MeSH terms: Hydrocarbons, Chlorinated*
  4. Tiong SH, Nair A, Abd Wahid SA, Saparin N, Ab Karim NA, Ahmad Sabri MP, et al.
    PMID: 34407744 DOI: 10.1080/19440049.2021.1960430
    Chlorinated compounds such as sphingolipid-based organochlorine compounds are precursors for the formation of 3-monochlororopanediol (3-MCPD) esters in palm oil. This study evaluates the effects of several factors within the palm oil supply chain on the levels of sphingolipid-based organochlorine, which in turn may influence the formation of 3-MCPD esters during refining. These factors include application of inorganic chlorinated fertiliser in the oil palm plantation, bruising and degradation of oil palm fruits after harvest, recycling of steriliser condensate as water for dilution of crude oil during oil palm milling, water washing of palm oil and different refining conditions. It was observed that bruised and degraded oil palm fruits showed higher content of sphingolipid-based organochlorine than control. In addition, recycling steriliser condensate during milling resulted in elevated content of sphingolipid-based organochlorine in palm oil. However, the content of sphingolipid-based organochlorine compounds was reduced by neutralisation, degumming and bleaching steps during refining. Although water washing of crude palm oils (CPO) prior to refining did not reduce the content of sphingolipid-based organochlorine, it did reduce the formation of 3-MCPD esters through the removal of water-soluble chlorinated compounds. It was found that the use of inorganic chlorinated fertiliser in plantations did not increase the content of chlorinated compounds in oil palm fruits and extracted oil, and hence chlorinated fertiliser does not seem to play a role in the formation of 3-MCPD esters in palm oil. Overall, this study concluded that lack of freshness and damage to the fruits during transport to mills, combined with water and oil recycling in mills are the major contributors of chlorinated precursor for 3-MCPD esters formation in palm oil.
    Matched MeSH terms: Hydrocarbons, Chlorinated/analysis*
  5. Tiong SH, Saparin N, Teh HF, Ng TLM, Md Zain MZB, Neoh BK, et al.
    J Agric Food Chem, 2018 Jan 31;66(4):999-1007.
    PMID: 29260544 DOI: 10.1021/acs.jafc.7b04995
    During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products. Analysis of the chlorine isotope mass pattern exhibited in high-resolution mass spectrometry enabled organochlorine compound identification in crude palm oils as constituents of wax esters, fatty acid, diacylglycerols, and sphingolipids, which are produced endogenously in oil palm mesocarp throughout ripening. Analysis of thermal decomposition and changes during refining suggested that these naturally present organochlorine compounds in palm oils and perhaps in other vegetable oils are precursors of 3-MCPD esters. Enrichment and dose-response showed a linear relationship to 3-MCPD ester formation and indicated that the sphingolipid-based organochlorine compounds are the most active precursors of 3-MCPD esters.
    Matched MeSH terms: Hydrocarbons, Chlorinated
  6. Tursun M, Kumar CS, Bilge M, Rhyman L, Fun HK, Parlak C, et al.
    PMID: 25829021 DOI: 10.1016/j.saa.2015.03.022
    Molecular structure and properties of 2-fluoro-4-bromobenzaldehyde (FBB, C7H4BrFO) was experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of FBB were supported with computational studies using the density functional theory, with the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Molecular dimer formed by the intermolecular hydrogen bonding was investigated. Potential energy distribution analysis of normal modes was performed to identify characteristic frequencies. FBB crystallizes in orthorhombic space group P2(1)2(1)2(1) with the O-trans conformation. In order to investigate halogen effect, the chloro- (CBB) and bromo- (BBB) analogs of FBB have also been studied theoretically. It is observed that all compounds prefer the stable O-trans conformation. Although the free energy difference between the O-cis and O-trans conformers is less than 2.5 kcal/mol, the free energy rotational barrier is at least 7.4 kcal/mol. There is a good agreement between the experimentally determined structural parameters, and vibrational frequencies of FBB and those predicted theoretically.
    Matched MeSH terms: Hydrocarbons, Chlorinated/chemistry*
  7. Wan Mohd Razi Idris, Sahibin Abdul Rahim, Mohd Talib Latif, Zulfahmi Ali Rahman, Tukimat Lihan, Low YC, et al.
    Kajian yang dijalankan ini bertujuan untuk menilai indeks kualiti air di sekitar kawasan lombong di Sungai Pelepah Kanan, Kota Tinggi, Johor. Sebanyak enam stesen pensampelan telah dipilih dari bahagian hulu ke hilir sungai ini untuk menilai indeks kualiti air di sepanjang sungai tersebut. Tiga replikasi sampel telah diambil daripada setiap stesen pensampelan. Pengambilan sampel dilakukan pada dua musim yang berbeza iaitu musim kering (Julai) dan musim hujan (Disember) 2007. Parameter in-situ yang ditentukan dalam kajian ini ialah suhu, pH, oksigen terlarut (DO) dan konduktiviti. Parameter ex-situ yang dianalisis dalam makmal ialah turbiditi air, jumlah pepejal terampai (TSS), keperluan oksigen biokimia (BOD), keperluan oksigen kimia (COD) dan ammonia nitrogen (NH3-N). Berdasarkan Piawaian Interim Kualiti Air Kebangsaan Malaysia (INWQS) hasil kajian yang diperolehi menunjukkan semua stesen pensampelan di Sungai Pelepah Kanan pada bulan Julai berada dalam kelas I kecuali oksigen terlarut dan pH berada dalam kelas II. Selain itu, hasil kajian pada bulan Disember juga menunjukkan semua parameter fiziko-kimia berada dalam kelas I-II kecuali pH berada dalam kelas III. Ujian korelasi menunjukkan terdapat hubungan bererti antara parameter-parameter fiziko-kimia yang di tertentukan. Analisis Indeks Kualiti Air (IKA) menunjukkan nilai purata IKA pada bulan Julai adalah 96.88 (kelas I) manakala pada bulan Disember telah merosot ke 84.03 (kelas II). Berdasarkan kepada nilai IKA dan perbandingan dengan INWQS, indeks kualiti air Sungai Pelepah Kanan adalah berada pada tahap yang bersih dan kurang mengalami pencemaran yang serius daripada aktiviti antropogenik mahupun pencemaran secara semula jadi.
    Matched MeSH terms: Hydrocarbons, Chlorinated
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links