Displaying publications 41 - 53 of 53 in total

Abstract:
Sort:
  1. Ramasamy R, Tong CK, Seow HF, Vidyadaran S, Dazzi F
    Cell Immunol, 2008 Feb;251(2):131-6.
    PMID: 18502411 DOI: 10.1016/j.cellimm.2008.04.009
    Mesenchymal stem cells (MSC) are non-haematopoietic stem cells that are capable of differentiating into tissues of mesodermal origin. MSC play an important role in supporting the development of fetal and adult haematopoiesis. More recently, MSC have also been found to exhibit inhibitory effect on T cell responses. However, there is little information on the mechanism of this immunosuppression and our study addresses this issue by targeting T cell functions at various level of immune responses. We have generated MSC from human adult bone marrow (BM) and investigated their immunoregulatory function at different phases of T cell responses. MSC showed the ability to inhibit mitogen (CD3/CD28 microbeads)-activated T cell proliferation in a dose-dependent manner. In order to evaluate the specificity of this immunosuppression, the proliferation of CD4(+) and CD8(+) cells were measured. MSC equally inhibit CD4(+) and CD8(+) subpopulations of T cells in response to PHA stimulation. However, the antiproliferative effect of MSC is not due to the inhibition of T cell activation. The expression of early activation markers of T cells, namely CD25 and CD69 were not significantly altered by MSC at 24, 48 and 72h. Furthermore, the immunosuppressive effect of MSC mainly targets T cell proliferation rather than their effector function since cytotoxicity of T cells is not affected. This work demonstrates that the immunosuppressive effect of MSC is exclusively a consequence of an anti-proliferative activity, which targets T cells of different subpopulations. For this reason, they have the potential to be exploited in the control of unwanted immune responses such as graft versus host disease (GVHD) and autoimmunity.
    Matched MeSH terms: Lymphocyte Activation
  2. El-Deeb NM, El-Adawi HI, El-Wahab AEA, Haddad AM, El Enshasy HA, He YW, et al.
    Front Cell Dev Biol, 2019;7:165.
    PMID: 31457012 DOI: 10.3389/fcell.2019.00165
    Medicinal mushrooms have been used for centuries against cancer and infectious diseases. These positive biological effects of mushrooms are due in part to the indirect action of stimulating immune cells. The objective of the current study is to investigate the possible immunomodulatory effects of mushroom polysaccharides on NK cells against different cancer cells. In this current study, fruiting bodies isolated from cultured Pleurotus ostreatus were extracted and partially purified using DEAE ion-exchange chromatography. The activation action of the collected fractions on Natural Killer cells was quantified against three different cancer cell lines in the presence or absence of human recombinant IL2 using three different activation and co-culture conditions. The possible modes of action of mushroom polysaccharides against cancer cells were evaluated at the cellular and molecular levels. Our results indicate that P. ostreatus polysaccharides induced NK-cells cytotoxic effects against lung and breast cancer cells with the largest effect being against breast cancer cells (81.2%). NK cells activation for cytokine secretion was associated with upregulation of KIR2DL genes while the cytotoxic activation effect of NK cells against cancer cells correlated with NKG2D upregulation and induction of IFNγ and NO production. These cytotoxic effects were enhanced in the presence of IL2. Analysis of the most active partially purified fraction indicates that it is predominantly composed of glucans. These results indicate bioactive 6-linked glucans present in P. ostreatus extracts activate NK-cell cytotoxicity via regulation of activation and induction of IFNγ and NO. These studies establish a positive role for bioactive P. ostreatus polysaccharides in NK-cells activation and induction of an innate immune response against breast and lung cancer cells.
    Matched MeSH terms: Lymphocyte Activation
  3. Wahab WA, Šuligoj T, Ellis J, Côrtez-Real B, Ciclitira PJ
    Int J Exp Pathol, 2016 Aug;97(4):303-309.
    PMID: 27659035 DOI: 10.1111/iep.12199
    Coeliac disease (CD) is an inflammatory disorder of the small intestine. It includes aberrant adaptive immunity with presentation of CD toxic gluten peptides by HLA-DQ2 or DQ8 molecules to gluten-sensitive T cells. A ω-gliadin/C-hordein peptide (QPFPQPEQPFPW) and a rye-derived secalin peptide (QPFPQPQQPIPQ) were proposed to be toxic in CD, as they yielded positive responses when assessed with peripheral blood T-cell clones derived from individuals with CD. We sought to assess the immunogenicity of the candidate peptides using gluten-sensitive T-cell lines obtained from CD small intestinal biopsies. We also sought to investigate the potential cross-reactivity of wheat gluten-sensitive T-cell lines with peptic-tryptic digested barley hordein (PTH) and rye secalin (PTS). Synthesised candidate peptides were deamidated with tissue transglutaminase (tTG). Gluten-sensitive T-cell lines were generated by culturing small intestinal biopsies from CD patients with peptic-tryptic gluten (PTG), PTH or PTS, along with autologous PBMCs for antigen presentation. The stimulation indices were determined by measuring the relative cellular proliferation via incorporation of (3) H-thymidine. The majority of T-cell lines reacted to the peptides studied. There was also cross-reactivity between wheat gluten-sensitive T-cell lines and the hordein, gliadin and secalin peptides. PTH, PTS, barley hordein and rye secalin-derived CD antigen-sensitive T-cell lines showed positive stimulation with PTG. ω-gliadin/C-hordein peptide and rye-derived peptide are immunogenic to gluten-sensitive T-cell lines and potentially present in wheat, rye and barley. Additional CD toxic peptides may be shared.
    Matched MeSH terms: Lymphocyte Activation/immunology
  4. Rajah T, Chow SC
    Toxicol Appl Pharmacol, 2014 Jul 15;278(2):100-6.
    PMID: 24768707 DOI: 10.1016/j.taap.2014.04.014
    The caspase inhibitor benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and l-cysteine, whereas d-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.
    Matched MeSH terms: Lymphocyte Activation/drug effects*; Lymphocyte Activation/immunology; Lymphocyte Activation/physiology
  5. Lim KP, Chun NA, Gan CP, Teo SH, Rahman ZA, Abraham MT, et al.
    Hum Vaccin Immunother, 2014;10(11):3214-23.
    PMID: 25483651 DOI: 10.4161/hv.29226
    The ever-increasing number of tumor-associated antigens has provided a major stimulus for the development of therapeutic peptides vaccines. Tumor-associated peptides can induce high immune response rates and have been developed as vaccines for several types of solid tumors, and many are at various stages of clinical testing. MAGED4B, a melanoma antigen, is overexpressed in oral squamous cell carcinoma (OSCC) and this expression promotes proliferation and cell migration. In this study, we have identified 9 short peptides derived from MAGED4B protein that are restricted in binding to the HLA subtypes common in the Asian population (HLA-A2, A11, and A24). The peptides had good binding affinity with the MHC-Class I molecules and stimulated ex-vivo IFN-gamma and Granzyme-B production in blood samples from OSCC patients, suggesting that they are immunogenic. Further, T cells stimulated with peptide-pulsed dendritic cells showed enhanced T-cell cytotoxic activity against MAGED4B-overexpressing OSCC cell lines. In summary, we have identified MAGED4B peptides that induce anti-tumor immune responses advocating that they could be further developed as vaccine candidates for the treatment of OSCC.
    Matched MeSH terms: Lymphocyte Activation/immunology
  6. Yuandani, Jantan I, Ilangkovan M, Husain K, Chan KM
    Drug Des Devel Ther, 2016;10:1935-45.
    PMID: 27354767 DOI: 10.2147/DDDT.S105651
    Standardized extract of Phyllanthus amarus has previously been shown to have a strong inhibitory effect on phagocytic activity of human neutrophils. The current study was carried out to evaluate the effects of constituents of the extract of P. amarus on nitric oxide (NO) production as well as lymphocyte proliferation and cytokine release from phagocytes. Three compounds, ethyl 8-hydroxy-8-methyl-tridecanoate, 7β,19α dihydroxy-urs-12-ene, and 1,7,8-trihydroxy-2-naphtaldehyde, together with seven known compounds were isolated from the whole plant of P. amarus. The isolated compounds and reference standards, ie, gallic acid, ellagic acid, corilagin, and geraniin, which were quantitatively analyzed in the extracts, were evaluated for their effects on immune cells. Among the compounds tested, the lignans, especially phyltetralin and phyllanthin, showed strong inhibition on lymphocyte proliferation with half maximal inhibitory concentration (IC50) values of 1.07 μM and 1.82 μM, respectively. Ethyl 8-hydroxy-8-methyl-tridecanoate and 1,7,8-trihydroxy-2-naphtaldehyde exhibited strong inhibition on nitric oxide production with IC50 values of 0.91 μM and 1.07 μM, respectively. Of all the compounds, corilagin was the strongest inhibitor of tumor necrosis factor-α release with an IC50 value of 7.39 μM, whereas geraniin depicted the strongest inhibitory activity on interleukin-1β release with an IC50 value of 16.41 μM. The compounds constituting the extract of P. amarus were able to inhibit the innate immune response of phagocytes at different steps.
    Matched MeSH terms: Lymphocyte Activation
  7. Ilangkovan M, Jantan I, Mesaik MA, Bukhari SN
    Drug Des Devel Ther, 2015;9:4917-30.
    PMID: 26347462 DOI: 10.2147/DDDT.S88189
    Phyllanthus amarus (family: Euphorbiaceae) is of immense interest due to its wide spectrum of biological activities. In the present study, the standardized 80% ethanol extract of P. amarus was investigated for its modulatory activity on various cellular immune parameters, including chemotaxis of neutrophils, engulfment of Escherichia coli by neutrophils, and Mac-1 expression, in leukocytes isolated from treated/nontreated Wistar-Kyoto rats. The detailed cell-mediated activity of P. amarus was also investigated, including analysis of the effects on T- and B-cell proliferation and CD4(+) and CD8(+) T-cell subsets in splenic mononuclear cells, and estimation of serum cytokine production by activated T-cells. The main components of the extract, phyllanthin, hypophyllanthin, corilagin, geraniin, ellagic acid, and gallic acid were identified and quantitatively analyzed in the extracts, using validated reversed-phase high-performance liquid chromatography (HPLC) methods. N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced neutrophils isolated from rats administered with the extract of P. amarus, at doses ranging from 100 to 400 mg/kg for 14 days, revealed a significant dose-dependent reduction in neutrophil migration (P<0.05). Similar patterns of inhibition were also observed in phagocytic activity and in fMLP-induced changes in expression of β2 integrin polymorphonuclear neutrophils. The results in P. amarus-treated rats also demonstrated a dose-dependent inhibition of both lipopolysaccharide-stimulated B-cell proliferation and concanavalin A-stimulated T-cell proliferation as compared with sensitized control. At a dose of 400 mg/kg (P<0.01), there was a significant decrease in the (%) expression of CD4(+) and CD8(+) in splenocytes and in serum cytokines of T helper (Th1) (IL-2 and IFN-γ) and Th2 (IL-4). In conclusion, P. amarus showed effective immunosuppressive activities in cellular immune response, by various immune regulatory mechanisms, and may be useful for improvement of immune-related disorders.
    Matched MeSH terms: Lymphocyte Activation/drug effects
  8. Ilangkovan M, Jantan I, Bukhari SN
    Phytomedicine, 2016 Nov 15;23(12):1441-1450.
    PMID: 27765364 DOI: 10.1016/j.phymed.2016.08.002
    BACKGROUND: Phyllanthin found in many Phyllanthus species has various biochemical and pharmacological properties especially on its hepatoprotective effects. However, its effect on the immune system has not been well documented.

    PURPOSE: In the present study, phyllanthin isolated from Phyllanthus amarus was investigated for its immunosuppressive effects on various cellular and humoral immune responses in Balb/C mice.

    METHODS: Male mice were treated daily at 20, 40 and 100mg/kg of phyllanthin for 14 days by oral gavage. The effects of phyllanthin on cellular immune responses in treated /non treated mice were determined by measuring CD 11b/CD 18 integrin expression, phagocytosis, nitric oxide (NO) production, myeloperoxidase activity (MPO), T and B cells proliferation, lymphocyte phenotyping, serum cytokines production by activated T-cells and delayed type hypersensitivity (DTH). Its effects on humoral immune responses were evaluated by determining the serum levels of lysozyme and ceruloplasmin, and immunoglobulins (IgG and IgM).

    RESULTS: Phyllanthin dose-dependently inhibited CD11b/CD18 adhesion, the engulfment of E. coli by peritoneal macrophages molecules, NO and MPO release in treated mice. Phyllanthin caused significant and dose-dependent inhibition of T and B lymphocytes proliferation and down-regulation of the Th1 (IL-2 and IFN-γ) and Th2 (IL-4) cytokines. Phyllanthin at 100mg/kg caused a significant reduction in the percentage expression of CD4(+) and CD8(+) in splenocytes and the inhibition was comparable to that of cyclosporin A at 50mg/kg. At 100mg/kg, phyllanthin also dose-dependently exhibited strong inhibition on the sheep red blood cell (sRBC)-induced swelling rate of mice paw in DTH. Significant inhibition of serum levels of ceruloplasmin and lysozyme were observed in mice fed with higher doses (40 and 100mg/kg) of phyllanthin. Anti-sRBC immunoglobulins (IgM and IgG) antibody titer was down-regulated in immunized and phyllanthin-treated mice in a dose-dependent manner with maximum inhibition being observed at 100mg/kg.

    CONCLUSION: The strong inhibitory effects of phyllanthin on the cellular and humoral immune responses suggest that phyllanthin may be a good candidate for development into an effective immunosuppressive agent.

    Matched MeSH terms: Lymphocyte Activation/drug effects
  9. Yeap SK, Omar AR, Ho WY, Beh BK, Ali AM, Alitheen NB
    PMID: 23800124 DOI: 10.1186/1472-6882-13-145
    Rhaphidophora korthalsii (Araceae) is a root-climber plant which has been widely used in Chinese traditional medicine for cancer and skin disease treatment. Previous reports have recorded its immunomodulatory effects on mice splenocyte and human peripheral blood. This study investigated the potential immunostimulatory effect of Rhaphidophora korthalsii on human PBMC enriched NK cell.
    Matched MeSH terms: Lymphocyte Activation
  10. Keong YS, Alitheen NB, Mustafa S, Abdul Aziz S, Abdul Rahman M, Ali AM
    Pak J Pharm Sci, 2010 Jan;23(1):75-82.
    PMID: 20067871
    In this study, the immunomodulatory effects of zerumbone isolated from Zingiber zerumbet were investigated by evaluating the effects of this compound towards the lymphocytes proliferation (mice thymocytes, mice splenocytes and human human peripheral blood mononuclear cells, PBMC), cell cycle progression and cytokine (interleukin 2 and 12) induction. Lymphocyte proliferation assay showed that zerumbone was able to activate mice thymocytes, splenocytes and PBMC at dosage dependent pattern where the best concentration was 7.5 microg/ml. Flow cytometry analysis showed the highest population of PBMC entered into G2/M phase after treatment for 72 h with 7.5 microg/ml zerumbone. The production of human interleukin-2 and human interleukin-12 cytokines in culture supernatant from zerumbone activated lymphocytes was prominently upregulated at 24 hour and decreased from 48 h to 72 h. The above results indicate that zerumbone can be used as immunomodulatory agent which can react toward the immune cell cytokine production in dosage dependent pattern.
    Matched MeSH terms: Lymphocyte Activation/drug effects
  11. Noh LM, Hussein SH, Sukumaran KD, Rose I, Abdullah N
    J Clin Lab Immunol, 1991 Jun;35(2):89-93.
    PMID: 1688166
    A case of chronic mucocutaneous candidiasis in a Malaysian child who subsequently developed disseminated tuberculosis and toxoplasmosis is described. The phenotype of her peripheral blood mononuclear cells showed discordance for her T cell markers. The presence of a subpopulation of CD2-/CD3+ mononuclear cells leading to an immunodeficiency state is consistent with failure of activation of CD2-mediated alternative pathway resulting in immunodeficiency. Such abnormal CD2-/CD3+ subpopulations have been described in lepromatous leprosy and foetal abortuses.
    Matched MeSH terms: Lymphocyte Activation
  12. Hong CY, Wong NK, Abdullah M
    Asian Pac J Allergy Immunol, 2015 Mar;33(1):26-32.
    PMID: 25840631 DOI: 10.12932/AP0463.33.1.2015
    Tamm-Horsfall glycoprotein (THP) and uromodulin are the most abundant glycoproteins in non-pregnant women's/men's and pregnant women's urine, respectively. However, the bioactivities of these glycoproteins are still unclear.
    Matched MeSH terms: Lymphocyte Activation/drug effects
  13. Abdulamir AS, Hafidh RR, Abubakar F, Abbas KA
    BMC Immunol, 2008;9:73.
    PMID: 19087256 DOI: 10.1186/1471-2172-9-73
    BACKGROUND: Asthma is a complicated network of inflammatory reactions. It is classified into mild, moderate, and severe persistent asthma. The success of asthma therapy relies much on understanding the underlying mechanisms of inflammation at each stage of asthma severity. The aim of this study was to explore the differences in apoptotic potential, CD4/CD8 ratio, memory compartment, and T- helper (Th) 1 and 2 profile of peripheral blood lymphocytes (PBL) in patients with mild intermittent asthma and severe persistent asthma during exacerbation periods.
    RESULTS: Four research lines were investigated and compared among mild asthmatics, severe asthmatics, and healthy groups by applying immunocytochemical staining of PBL. Antiapoptotic and proapoptotic proteins with Bcl-2/Bax ratio, CD4, CD8 markers with CD4+/CD8+ ratio, CD45RO+, CD45RA+ markers with memory/naive ratio (CD45RO+/CD45RA+). Th2/Th1 cytokines balance represented by IL-4/IFN-gamma ratio was measured by enzyme-linked immunosorbent assay (ELISA) for in vitro PBL cytokine synthesis. It was found that Bcl-2/Bax ratio was higher in severe than in mild asthmatics which in turn was higher than in healthy group. And memory/naive ratio of PBL was higher in severe than in mild asthmatics. Moreover, memory cells, CD45RO+ and CD45RO+/CD45RA+ ratio were correlated directly with Bcl-2/Bax, in severe and mild asthma patients. In contrast, CD4+/CD8+ ratio was not changed significantly among healthy group, mild and severe asthmatics. However, CD8+ cells were correlated directly with memory cells, CD45RO+, in severe asthmatics only. Interestingly, the dominant profile of cytokines appeared to change from T helper 2 (Th2) in mild asthmatics to T helper 1 (Th1) in severe asthmatics where the lowest in vitro IL-4/IFN-gamma ratio and highest IFN-gamma were found.
    CONCLUSION: It was concluded that the underlying mechanisms of inflammation might vary greatly with asthma stage of severity. Mild intermittent asthma is mainly Th2 allergen-oriented reaction during exacerbations with good level of apoptosis making the inflammation as self-limiting, while in severe persistent asthma, the inflammatory reaction mediated mainly by Th1 cytokines with progressive loss of apoptosis leading to longer exacerbations, largely expanded memory cells, CD45RO+, leading to persistent baseline inflammation.
    Matched MeSH terms: Lymphocyte Activation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links