Displaying publications 41 - 60 of 74 in total

Abstract:
Sort:
  1. Charon J, Grigg MJ, Eden JS, Piera KA, Rana H, William T, et al.
    PLoS Pathog, 2019 12;15(12):e1008216.
    PMID: 31887217 DOI: 10.1371/journal.ppat.1008216
    Eukaryotes of the genus Plasmodium cause malaria, a parasitic disease responsible for substantial morbidity and mortality in humans. Yet, the nature and abundance of any viruses carried by these divergent eukaryotic parasites is unknown. We investigated the Plasmodium virome by performing a meta-transcriptomic analysis of blood samples taken from patients suffering from malaria and infected with P. vivax, P. falciparum or P. knowlesi. This resulted in the identification of a narnavirus-like sequence, encoding an RNA polymerase and restricted to P. vivax samples, as well as an associated viral segment of unknown function. These data, confirmed by PCR, are indicative of a novel RNA virus that we term Matryoshka RNA virus 1 (MaRNAV-1) to reflect its analogy to a "Russian doll": a virus, infecting a parasite, infecting an animal. Additional screening revealed that MaRNAV-1 was abundant in geographically diverse P. vivax derived from humans and mosquitoes, strongly supporting its association with this parasite, and not in any of the other Plasmodium samples analyzed here nor Anopheles mosquitoes in the absence of Plasmodium. Notably, related bi-segmented narnavirus-like sequences (MaRNAV-2) were retrieved from Australian birds infected with a Leucocytozoon-a genus of eukaryotic parasites that group with Plasmodium in the Apicomplexa subclass hematozoa. Together, these data support the establishment of two new phylogenetically divergent and genomically distinct viral species associated with protists, including the first virus likely infecting Plasmodium parasites. As well as broadening our understanding of the diversity and evolutionary history of the eukaryotic virosphere, the restriction to P. vivax may be of importance in understanding P. vivax-specific biology in humans and mosquitoes, and how viral co-infection might alter host responses at each stage of the P. vivax life-cycle.
    Matched MeSH terms: Malaria, Vivax
  2. Bamaga OA, Mahdy MA, Mahmud R, Lim YA
    Parasit Vectors, 2014;7:351.
    PMID: 25074325 DOI: 10.1186/1756-3305-7-351
    Yemen is a Mediterranean country where 65% of its population is at risk of malaria, with 43% at high risk. Yemen is still in the control phase without sustainable reduction in the proportion of malaria cases. A cross-sectional household survey was carried out in different districts in the southeast of the country to determine malaria prevalence and identify factors that impede progress of the elimination phase.
    Matched MeSH terms: Malaria, Vivax/epidemiology*
  3. Al-Mekhlafi AM, Mahdy MA, A Azazy A, Fong MY
    Parasit Vectors, 2010 Nov 19;3:110.
    PMID: 21092097 DOI: 10.1186/1756-3305-3-110
    BACKGROUND: Malaria is an endemic disease in Yemen and is responsible for 4.9 deaths per 100,000 population per year and 43,000 disability adjusted life years lost. Although malaria in Yemen is caused mainly by Plasmodium falciparum and Plasmodium vivax, there are no sequence data available on the two species. This study was conducted to investigate the distribution of the Plasmodium species based on the molecular detection and to study the molecular phylogeny of these parasites.

    METHODS: Blood samples from 511 febrile patients were collected and a partial region of the 18 s ribosomal RNA (18 s rRNA) gene was amplified using nested PCR. From the 86 positive blood samples, 13 Plasmodium falciparum and 4 Plasmodium vivax were selected and underwent cloning and, subsequently, sequencing and the sequences were subjected to phylogenetic analysis using the neighbor-joining and maximum parsimony methods.

    RESULTS: Malaria was detected by PCR in 86 samples (16.8%). The majority of the single infections were caused by P. falciparum (80.3%), followed by P. vivax (5.8%). Mixed infection rates of P. falciparum + P. vivax and P. falciparum + P. malariae were 11.6% and 2.3%, respectively. All P. falciparum isolates were grouped with the strain 3D7, while P. vivax isolates were grouped with the strain Salvador1. Phylogenetic trees based on 18 s rRNA placed the P. falciparum isolates into three sub-clusters and P. vivax into one cluster. Sequence alignment analysis showed 5-14.8% SNP in the partial sequences of the 18 s rRNA of P. falciparum.

    CONCLUSIONS: Although P. falciparum is predominant, P. vivax, P. malariae and mixed infections are more prevalent than has been revealed by microscopy. This overlooked distribution should be considered by malaria control strategy makers. The genetic polymorphisms warrant further investigation.

    Matched MeSH terms: Malaria, Vivax
  4. Ahmed MA, Chu KB, Quan FS
    PeerJ, 2018;6:e6141.
    PMID: 30581686 DOI: 10.7717/peerj.6141
    Introduction: The zoonotic malaria parasite Plasmodium knowlesi has currently become the most dominant form of infection in humans in Malaysia and is an emerging infectious disease in most Southeast Asian countries. The P41 is a merozoite surface protein belonging to the 6-cysteine family and is a well-characterized vaccine candidate in P. vivax and P. falciparum; however, no study has been done in the orthologous gene of P. knowlesi. This study investigates the level of polymorphism, haplotypes and natural selection of pk41 genes in clinical isolates from Malaysia.

    Method: Thirty-five full-length pk41 sequences from clinical isolates of Malaysia along with four laboratory lines (along with H-strain) were downloaded from public databases. For comparative analysis between species, orthologous P41 genes from P. falciparum, P. vivax, P. coatneyi and P. cynomolgi were also downloaded. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. Phylogenetic relationships between Pk41 genes were determined using MEGA 5.0 software.

    Results: Analysis of 39 full-length pk41 sequences along with the H-strain identified 36 SNPs (20 non-synonymous and 16 synonymous substitutions) resulting in 31 haplotypes. Nucleotide diversity across the full-length gene was low and was similar to its ortholog in P. vivax; pv41. Domain-wise amino acid analysis of the two s48/45 domains indicated low level of polymorphisms for both the domains, and the glutamic acid rich region had extensive size variations. In the central domain, upstream to the glutamate rich region, a unique two to six (K-E)n repeat region was identified within the clinical isolates. Overall, the pk41 genes were indicative of negative/purifying selection due to functional constraints. Domain-wise analysis of the s48/45 domains also indicated purifying selection. However, analysis of Tajima's D across the genes identified non-synonymous SNPs in the s48/45 domain II with high positive values indicating possible epitope binding regions. All the 6-cysteine residues within the s48/45 domains were conserved within the clinical isolates indicating functional conservation of these regions. Phylogenetic analysis of full-length pk41 genes indicated geographical clustering and identified three subpopulations of P. knowlesi; one originating in the laboratory lines and two originating from Sarawak, Malaysian Borneo.

    Conclusion: This is the first study to report on the polymorphism and natural selection of pk41 genes from clinical isolates of Malaysia. The results reveal that there is low level of polymorphism in both s48/45 domains, indicating that this antigen could be a potential vaccine target. However, genetic and molecular immunology studies involving higher number of samples from various parts of Malaysia would be necessary to validate this antigen's candidacy as a vaccine target for P. knowlesi.

    Matched MeSH terms: Malaria, Vivax
  5. Atroosh WM, Al-Mekhlafi HM, Al-Jasari A, Sady H, Dawaki SS, Elyana FN, et al.
    PeerJ, 2016;4:e2191.
    PMID: 27478699 DOI: 10.7717/peerj.2191
    Introduction. Despite the efforts of the malaria control programme, malaria morbidity is still a common health problem in Yemen, with 60% of the population at risk. Plasmodium falciparum is responsible for 99% of malaria cases. The emergence in Yemen of parasite resistance to chloroquine (CQ) prompted the adoption of artemisinin combination therapy (ACT) in 2009, which involves the use of artesunate plus sulphadoxine-pyrimethamine (AS + SP). However, CQ was retained as the drug of choice for vivax malaria. To assess the impact of the change in the malaria treatment policy five years after its introduction, the present study investigated the mutations in the CQ resistance transporter (pfcrt) and multidrug resistance 1 (pfmdr1) genes. Method. A molecular investigation of 10 codons of pfcrt (72-76, 220, 271, 326, 356, and 371) and five codons of pfmdr1 (86, 184, 1034, 1042, and 1246) was conducted on P. falciparum isolates from districts with the highest malaria endemicity in the Hodeidah and Al-Mahwit governorates in Tehama region, Yemen. A total of 86 positive cases of falciparum monoinfection were investigated for the presence of mutations related to CQ and other antimalarials using a PCR-RFLP assay. Results. There was a wide prevalence of pfcrt gene mutations with the pfcrt 76T CQ resistance marker being predominant (97.7%). The prevalence of other pfcrt mutations varied from high (75E: 88%) to moderate (74I: 79.1%, 220S: 69.8%, 271E and 371I: 53.5%) or low (326S: 36%, 72S: 10.5%). Mutated pfcrt 72-76 amino acids haplotypes were highly prevalent (98.8%). Among these, the CVIET classic, old-world African/Southeast Asian haplotype was the most predominant, and was mostly found in the isolates from the Khamis Bani Saad district of Al-Mahwit (93.1%) and the AdDahi district of Hodeidah (88.9%). However, it was only found in 26.3% of the isolates from the Bajil district of Hodeidah. Surprisingly, the SVMNT new-world South American haplotype was exclusively detected in 9.3% of the isolates from the Bajil district of Hodeidah. Mutations at Y184F of pfmdr1 were found in all isolates (100%) from all districts. The mutation for codons 1034C and 86Y were found only in the isolates from the AdDahi and Khamis Bani Saad districts. Overall, the AdDahi and Khamis Bani Saad districts were similar in terms of carrying most of the mutations in the pfcrt and pfmdr1 genes, while there was a lower prevalence of mutation in the isolates from the Bajil district. Conclusion. The high prevalence of mutations in pfcrt 5 years after the official cessation of CQ use against P. falciparum suggests that there is sustained CQ pressure on P. falciparum isolates in the study area. Moreover, the low prevalence of mutations in the pfmdr1 gene could be a good indicator of the high susceptibility of P. falciparum isolates to antimalarials other than CQ. A new strategy to ensure the complete nationwide withdrawal of CQ from the private drug market is recommended.
    Matched MeSH terms: Malaria, Vivax
  6. Kosuwin R, Putaporntip C, Tachibana H, Jongwutiwes S
    PLoS One, 2014;9(10):e110463.
    PMID: 25333779 DOI: 10.1371/journal.pone.0110463
    Thrombospondin-related adhesive protein (TRAP) of malaria parasites is essential for sporozoite motility and invasions into mosquito's salivary gland and vertebrate's hepatocyte; thereby, it is a promising target for pre-erythrocytic vaccine. TRAP of Plasmodium vivax (PvTRAP) exhibits sequence heterogeneity among isolates, an issue relevant to vaccine development. To gain insights into variation in the complete PvTRAP sequences of parasites in Thailand, 114 vivax malaria patients were recruited in 2006-2007 from 4 major endemic provinces bordering Myanmar (Tak in the northwest, n = 30 and Prachuap Khirikhan in the southwest, n = 25), Cambodia (Chanthaburi in the east, n = 29) and Malaysia (Yala and Narathiwat in the south, n = 30). In total, 26 amino acid substitutions were detected and 9 of which were novel, resulting in 44 distinct haplotypes. Haplotype and nucleotide diversities were lowest in southern P. vivax population while higher levels of diversities were observed in other populations. Evidences of positive selection on PvTRAP were demonstrated in domains II and IV and purifying selection in domains I, II and VI. Genetic differentiation was significant between each population except that between populations bordering Myanmar where transmigration was common. Regression analysis of pairwise linearized Fst and geographic distance suggests that P. vivax populations in Thailand have been isolated by distance. Sequence diversity of PvTRAP seems to be temporally stable over one decade in Tak province based on comparison of isolates collected in 1996 (n = 36) and 2006-2007. Besides natural selection, evidences of intragenic recombination have been supported in this study that could maintain and further generate diversity in this locus. It remains to be investigated whether amino acid substitutions in PvTRAP could influence host immune responses although several predicted variant T cell epitopes drastically altered the epitope scores. Knowledge on geographic diversity in PvTRAP constitutes an important basis for vaccine design provided that vaccination largely confers variant-specific immunity.
    Matched MeSH terms: Malaria, Vivax/diagnosis; Malaria, Vivax/parasitology
  7. Abdullah NR, Barber BE, William T, Norahmad NA, Satsu UR, Muniandy PK, et al.
    PLoS One, 2013;8(12):e82553.
    PMID: 24358203 DOI: 10.1371/journal.pone.0082553
    Despite significant progress in the control of malaria in Malaysia, the complex transmission dynamics of P. vivax continue to challenge national efforts to achieve elimination. To assess the impact of ongoing interventions on P. vivax transmission dynamics in Sabah, we genotyped 9 short tandem repeat markers in a total of 97 isolates (8 recurrences) from across Sabah, with a focus on two districts, Kota Marudu (KM, n = 24) and Kota Kinabalu (KK, n = 21), over a 2 year period. STRUCTURE analysis on the Sabah-wide dataset demonstrated multiple sub-populations. Significant differentiation (F ST  = 0.243) was observed between KM and KK, located just 130 Km apart. Consistent with low endemic transmission, infection complexity was modest in both KM (mean MOI  = 1.38) and KK (mean MOI  = 1.19). However, population diversity remained moderate (H E  = 0.583 in KM and H E  = 0.667 in KK). Temporal trends revealed clonal expansions reflecting epidemic transmission dynamics. The haplotypes of these isolates declined in frequency over time, but persisted at low frequency throughout the study duration. A diverse array of low frequency isolates were detected in both KM and KK, some likely reflecting remnants of previous expansions. In accordance with clonal expansions, high levels of Linkage Disequilibrium (I A (S) >0.5 [P<0.0001] in KK and KM) declined sharply when identical haplotypes were represented once (I A (S)  = 0.07 [P = 0.0076] in KM, and I A (S) = -0.003 [P = 0.606] in KK). All 8 recurrences, likely to be relapses, were homologous to the prior infection. These recurrences may promote the persistence of parasite lineages, sustaining local diversity. In summary, Sabah's shrinking P. vivax population appears to have rendered this low endemic setting vulnerable to epidemic expansions. Migration may play an important role in the introduction of new parasite strains leading to epidemic expansions, with important implications for malaria elimination.
    Matched MeSH terms: Malaria, Vivax/genetics; Malaria, Vivax/epidemiology; Malaria, Vivax/parasitology*; Malaria, Vivax/transmission*
  8. Naing C, Racloz V, Whittaker MA, Aung K, Reid SA, Mak JW, et al.
    PLoS One, 2013;8(12):e78819.
    PMID: 24312446 DOI: 10.1371/journal.pone.0078819
    BACKGROUND: This study aimed to synthesize available evidence on the efficacy of dihydroartemisinin-piperaquine (DHP) in treating uncomplicated Plasmodium vivax malaria in people living in endemic countries.

    METHODOLOGY AND PRINCIPAL FINDINGS: This is a meta-analysis of randomized controlled trials (RCT). We searched relevant studies in electronic databases up to May 2013. RCTs comparing efficacy of (DHP) with other artemisinin-based combination therapy (ACT), non-ACT or placebo were selected. The primary endpoint was efficacy expressed as PCR-corrected parasitological failure. Efficacy was pooled by hazard ratio (HR) and 95% CI, if studies reported time-to-event outcomes by the Kaplan-Meier method or data available for calculation of HR Nine RCTs with 14 datasets were included in the quantitative analysis. Overall, most of the studies were of high quality. Only a few studies compared with the same antimalarial drugs and reported the outcomes of the same follow-up duration, which created some difficulties in pooling of outcome data. We found the superiority of DHP over chloroquine (CQ) (at day > 42-63, HR:2.33, 95% CI:1.86-2.93, I (2): 0%) or artemether-lumefentrine (AL) (at day 42, HR:2.07, 95% CI:1.38-3.09, I (2): 39%). On the basis of GRADE criteria, further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

    DISCUSSION/CONCLUSION: Findings document that DHP is more efficacious than CQ and AL in treating uncomplicated P. vivax malaria. The better safety profile of DHP and the once-daily dosage improves adherence, and its fixed co-formulation ensures that both drugs (dihydroartemisinin and piperaquine) are taken together. However, DHP is not active against the hypnozoite stage of P. vivax. DHP has the potential to become an alternative antimalarial drug for the treatment uncomplicated P. vivax malaria. This should be substantiated by future RCTs with other ACTs. Additional work is required to establish how best to combine this treatment with appropriate antirelapse therapy (primaquine or other drugs under development).

    Matched MeSH terms: Malaria, Vivax/drug therapy*; Malaria, Vivax/epidemiology
  9. Turkiewicz A, Manko E, Oresegun DR, Nolder D, Spadar A, Sutherland CJ, et al.
    Sci Rep, 2023 Feb 07;13(1):2142.
    PMID: 36750737 DOI: 10.1038/s41598-023-29368-4
    The zoonotic Plasmodium knowlesi parasite is a growing public health concern in Southeast Asia, especially in Malaysia, where elimination of P. falciparum and P. vivax malaria has been the focus of control efforts. Understanding of the genetic diversity of P. knowlesi parasites can provide insights into its evolution, population structure, diagnostics, transmission dynamics, and the emergence of drug resistance. Previous work has revealed that P. knowlesi fall into three main sub-populations distinguished by a combination of geographical location and macaque host (Macaca fascicularis and M. nemestrina). It has been shown that Malaysian Borneo groups display profound heterogeneity with long regions of high or low divergence resulting in mosaic patterns between sub-populations, with some evidence of chromosomal-segment exchanges. However, the genetic structure of non-Borneo sub-populations is less clear. By gathering one of the largest collections of P. knowlesi whole-genome sequencing data, we studied structural genomic changes across sub-populations, with the analysis revealing differences in Borneo clusters linked to mosquito-related stages of the parasite cycle, in contrast to differences in host-related stages for the Peninsular group. Our work identifies new genetic exchange events, including introgressions between Malaysian Peninsular and M. nemestrina-associated clusters on various chromosomes, including in parasite invasion genes (DBP[Formula: see text], NBPX[Formula: see text] and NBPX[Formula: see text]), and important proteins expressed in the vertebrate parasite stages. Recombination events appear to have occurred between the Peninsular and M. fascicularis-associated groups, including in the DBP[Formula: see text] and DBP[Formula: see text] invasion associated genes. Overall, our work finds that genetic exchange events have occurred among the recognised contemporary groups of P. knowlesi parasites during their evolutionary history, leading to apparent mosaicism between these sub-populations. These findings generate new hypotheses relevant to parasite evolutionary biology and P. knowlesi epidemiology, which can inform malaria control approaches to containing the impact of zoonotic malaria on human communities.
    Matched MeSH terms: Malaria, Vivax*
  10. Mak JW, Normaznah Y, Chiang GL
    Singapore Med J, 1992 Oct;33(5):452-4.
    PMID: 1455266
    The quantitative buffy coat (QBC) technique was compared with the conventional thick blood film technique in a malaria survey carried out in a mesoendemic area of malaria in Betau, Pahang, Malaysia. The QBC technique was found to be a rapid technique but had a sensitivity of about 56% and a specificity of 95%, using the thick blood film method as the "gold standard". Malaria species identification was unsatisfactory with the QBC technique as it could identify parasites correctly in only about 60% of specimens. It was unable to detect as positive about 58% of specimens which had parasite counts < or = 500 per ul but could detect about 94% of those with counts > 500 per ul. This difference in positive detection rate was significantly different (p < 0.05). It cannot quantify parasitemia easily and the specimens cannot be stored for future reference and for quality control purposes. It is therefore concluded that the QBC technique cannot replace the classical thick blood film technique for use in malaria control programmes. Its use may be appropriate in situations like busy blood banks and outpatient clinics where rapid screening of malaria infection is needed but where experienced malaria microscopists may not be available.
    Matched MeSH terms: Malaria, Vivax/blood
  11. Han ET, Song TE, Park JH, Shin EH, Guk SM, Kim TY, et al.
    Am J Trop Med Hyg, 2004 Dec;71(6):745-9.
    PMID: 15642964
    To study the genetic diversity of re-emerging Plasmodium vivax in the Republic of Korea, nucleotide sequence variations at the merozoite surface protein-3alpha (PvMSP-3alpha) locus were analyzed using 24 re-emerging isolates and 4 isolates from imported cases. Compared with the well known Belem strain (Brazil), a large number of amino acid substitutions, deletions, and insertions were found at the locus of the isolates examined. The Korean isolates were divided into two allelic types; type I (15 isolates), similar to the Belem strain, and type II (9), similar to the Chess strain (New Guinea). Isolates from imported cases were classified into three types; type III (1 from Malaysia), similar to type B from western Thailand, type IV (1 each from Indonesia and India), and type V (1 from Pakistan), both being new types. Our results have shown that the MSP-3alpha locus of re-emerging Korean P. vivax is dimorphic with two allelic types coexisting in the endemic area.
    Matched MeSH terms: Malaria, Vivax/parasitology
  12. Foo LC, Rekhraj V, Chiang GL, Mak JW
    Am J Trop Med Hyg, 1992 Sep;47(3):271-5.
    PMID: 1524139
    The malaria parasite rates and densities were compared in 79 ovalocytic-normocytic pairs of Malayan Aborigines matched for age, sex, proximity of residence to each other, and use of bed nets when sleeping in their jungle settlement in central Peninsular Malaysia. Malaria infection was determined from thick and thin Giemsa-stained blood films collected monthly for a period of six months. Blood films from ovalocytic individuals were found to be positive for malaria less often than in persons with normal red blood cells (P less than 0.05). Malaria infections per 100 person-months at risk were 9.7 in the ovalocytic group compared with 15.19 in the normocytic group. Among individuals parasitemic at any time, heavy infections (greater than or equal to 10,000 parasites/mm3 of blood) with Plasmodium falciparum, P. vivax, and P. malariae were encountered only in normocytic subjects, which comprised approximately 12.5% of the malaria-positive individuals in this group. In an earlier survey of 629 settlers that identified subjects for the above study, the prevalence of ovalocytosis was found to increase significantly with age. The above field observations support the view that ovalocytic individuals might have a survival advantage in the face of malaria. Consideration of the ovalocytic factor is indicated in future evaluations of malaria control measures in areas where ovalocytosis is prevalent.
    Matched MeSH terms: Malaria, Vivax/blood; Malaria, Vivax/complications; Malaria, Vivax/epidemiology
  13. Odedra A, Webb L, Marquart L, Britton LJ, Chalon S, Moehrle JJ, et al.
    Am J Trop Med Hyg, 2020 11;103(5):1910-1917.
    PMID: 32815508 DOI: 10.4269/ajtmh.20-0491
    Liver transaminase elevations after treatment in malaria volunteer infection studies (VISs) have raised safety concerns. We investigated transaminase elevations from two human Plasmodium vivax VISs where subjects were treated with chloroquine (n = 24) or artefenomel (n = 8) and compared them with studies in Thailand (n = 41) and Malaysia (n = 76). In the VISs, alanine transaminase (ALT) increased to ≥ 2.5 × upper limit of normal (ULN) in 11/32 (34%) volunteers, peaking 5-8 days post-treatment. Transaminase elevations were asymptomatic, were not associated with elevated bilirubin, and resolved by day 42. The risk of an ALT ≥ 2.5 × ULN increased more than 4-fold (odds ratio [OR] 4.28; 95% CI: 1.26-14.59; P = 0.02) for every log10 increase in the parasite clearance burden (PCB), defined as the log-fold reduction in parasitemia 24 hours post-treatment. Although an elevated ALT ≥ 2.5 × ULN was more common after artefenomel than after chloroquine (5/8 [63%] versus 6/24 [25%]; OR 5.0; 95% CI: 0.91-27.47; P = 0.06), this risk disappeared when corrected for PCB. Peak ALT also correlated with peak C-reactive protein (R = 0.44; P = 0.012). Elevations in ALT (≥ 2.5 × ULN) were less common in malaria-endemic settings, occurring in 1/41 (2.5%) Thai patients treated with artefenomel, and in none of 76 Malaysians treated with chloroquine or artemisinin combination therapy. Post-treatment transaminase elevations are common in experimental P. vivax infection but do not appear to impact on participant safety. Although the mechanism of these changes remains uncertain, host inflammatory response to parasite clearance may be contributory.
    Matched MeSH terms: Malaria, Vivax/blood; Malaria, Vivax/drug therapy*; Malaria, Vivax/parasitology
  14. Noordin NR, Lee PY, Mohd Bukhari FD, Fong MY, Abdul Hamid MH, Jelip J, et al.
    Am J Trop Med Hyg, 2020 09;103(3):1107-1110.
    PMID: 32618263 DOI: 10.4269/ajtmh.20-0268
    Asymptomatic and/or low-density malaria infection has been acknowledged as an obstacle to achieving a malaria-free country. This study aimed to determine the prevalence of asymptomatic and/or low-density malaria infection in previously reported malarious localities using nested PCR in four states, namely, Johor, Pahang, Kelantan, and Selangor, between June 2019 and January 2020. Blood samples (n = 585) were collected and were extracted using a QIAamp blood kit. The DNA was concentrated and subjected to nested PCR. Thin and thick blood smears were examined as well. Of the 585 samples collected, 19 were positive: 10 for Plasmodium knowlesi, eight for Plasmodium vivax, and one for Plasmodium ovale. Asymptomatic and/or low-density malaria infection is a threat to malaria elimination initiatives. Eliminating countries should develop guidance policy on the importance of low-density malaria infection which includes detection and treatment policy.
    Matched MeSH terms: Malaria, Vivax/epidemiology*; Malaria, Vivax/parasitology
  15. Liew JWK, Mahpot RB, Dzul S, Abdul Razak HAB, Ahmad Shah Azizi NAB, Kamarudin MB, et al.
    Am J Trop Med Hyg, 2018 06;98(6):1709-1713.
    PMID: 29877176 DOI: 10.4269/ajtmh.17-1010
    Although Plasmodium vivax infections in Malaysia are usually imported, a significant autochthonous outbreak of vivax malaria was detected in a remote indigenous (Orang Asli) settlement located in northern peninsular Malaysia. Between November 2016 and April 2017, 164 cases of P. vivax infection were detected. Although 83.5% of the vivax cases were identified through passive case detection and contact screening during the first 7 weeks, subsequent mass blood screening (combination of rapid diagnostic tests, blood films, and polymerase chain reaction [PCR]) of the entire settlement (N = 3,757) revealed another 27 P. vivax infections, 19 of which were asymptomatic. The mapped data from this active case detection program was used to direct control efforts resulting in the successful control of the outbreak in this region. This report highlights the importance of proactive case surveillance and timely management of malaria control in Malaysia as it nears malaria elimination.
    Matched MeSH terms: Malaria, Vivax/epidemiology*; Malaria, Vivax/parasitology
  16. Moore CS, Cheong I
    Br J Clin Pract, 1995 Nov-Dec;49(6):304-7.
    PMID: 8554954
    The clinical, haematological and biochemical profiles of all domestic and imported malaria cases admitted to the Hospital Kuala Lumpur were analysed. The most common malaria types were Plasmodium falciparum (39.5%) and Plasmodium vivax (42%). The most common patient type was men aged 29-40 years (reflecting the high mobility of this group, many of whom were illegal immigrants). Misdiagnosis on admission was frequently due to the variable clinical presentation of the disease and the difficulties of obtaining an accurate history. Associated haematological abnormalities were common. Chloroquine resistance was diagnosed in four P. falciparum patients and in one P. falciparum/vivax patient. Overall, imported malaria did not seem more severe than domestic. The three patients with cerebral malaria survived. One patient died of acute liver failure. The large influx of illegal immigrants to Malaysia has resulted in a surge in malaria infection; illegal immigrants remain a source of chloroquine resistance.
    Matched MeSH terms: Malaria, Vivax/epidemiology*
  17. Islahudin F, Pleass RJ, Avery SV, Ting KN
    J Antimicrob Chemother, 2012 Oct;67(10):2501-5.
    PMID: 22763566 DOI: 10.1093/jac/dks253
    OBJECTIVES: Recent work with the yeast model revealed that the antiprotozoal drug quinine competes with tryptophan for uptake via a common transport protein, causing cellular tryptophan starvation. In the present work, it was hypothesized that similar interactions may occur in malaria patients receiving quinine therapy.

    PATIENTS AND METHODS: A direct observational study was conducted in which plasma levels of drug and amino acids (tryptophan, tyrosine and phenylalanine) were monitored during quinine treatment of malaria patients with Plasmodium falciparum infections.

    RESULTS: Consistent with competition for uptake from plasma into cells, plasma tryptophan and tyrosine levels increased ≥2-fold during quinine therapy. Plasma quinine levels in individual plasma samples were significantly and positively correlated with tryptophan and tyrosine in the same samples. Control studies indicated no effect on phenylalanine. Chloroquine treatment of Plasmodium vivax-infected patients did not affect plasma tryptophan or tyrosine. During quinine treatment, plasma tryptophan was significantly lower (and quinine significantly higher) in patients experiencing adverse drug reactions.

    CONCLUSIONS: Plasma quinine levels during therapy are related to patient tryptophan and tyrosine levels, and these interactions can determine patient responses to quinine. The study also highlights the potential for extrapolating insights directly from the yeast model to human malaria patients.

    Matched MeSH terms: Malaria, Vivax/drug therapy
  18. Oyong DA, Wilson DW, Barber BE, William T, Jiang J, Galinski MR, et al.
    J Infect Dis, 2019 11 06;220(12):1950-1961.
    PMID: 31419296 DOI: 10.1093/infdis/jiz407
    BACKGROUND: Complement-fixing antibodies are important mediators of protection against Plasmodium falciparum malaria. However, complement-fixing antibodies remain uncharacterized for Plasmodium vivax malaria. P. vivax merozoite surface protein 3α (PvMSP3α) is a target of acquired immunity and a potential vaccine candidate.

    METHODS: Plasma from children and adults with P. vivax malaria in Sabah, Malaysia, were collected during acute infection, 7 and 28 days after drug treatment. Complement-fixing antibodies and immunoglobulin M and G (IgM and IgG), targeting 3 distinctive regions of PvMSP3α, were measured by means of enzyme-linked immunosorbent assay.

    RESULTS: The seroprevalence of complement-fixing antibodies was highest against the PvMSP3α central region (77.6%). IgG1, IgG3, and IgM were significantly correlated with C1q fixation, and both purified IgG and IgM were capable of mediating C1q fixation to PvMSP3α. Complement-fixing antibody levels were similar between age groups, but IgM was predominant in children and IgG3 more prevalent in adults. Levels of functional antibodies increased after acute infection through 7 days after treatment but rapidly waned by day 28.

    CONCLUSION: Our study demonstrates that PvMSP3α antibodies acquired during P. vivax infection can mediate complement fixation and shows the important influence of age in shaping these specific antibody responses. Further studies are warranted to understand the role of these functional antibodies in protective immunity against P. vivax malaria.

    Matched MeSH terms: Malaria, Vivax/drug therapy; Malaria, Vivax/immunology*; Malaria, Vivax/parasitology*
  19. Barber BE, Grigg MJ, Piera K, Amante FH, William T, Boyle MJ, et al.
    J Infect Dis, 2019 09 26;220(9):1435-1443.
    PMID: 31250022 DOI: 10.1093/infdis/jiz334
    BACKGROUND: Anemia is a major complication of vivax malaria. Antiphosphatidylserine (PS) antibodies generated during falciparum malaria mediate phagocytosis of uninfected red blood cells that expose PS and have been linked to late malarial anemia. However, their role in anemia from non-falciparum Plasmodium species is not known, nor their role in early anemia from falciparum malaria.

    METHODS: We measured PS immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies in Malaysian patients with vivax, falciparum, knowlesi, and malariae malaria, and in healthy controls, and correlated antibody titres with hemoglobin. PS antibodies were also measured in volunteers experimentally infected with Plasmodium vivax and Plasmodium falciparum.

    RESULTS: PS IgM and IgG antibodies were elevated in patients with vivax, falciparum, knowlesi, and malariae malaria (P < .0001 for all comparisons with controls) and were highest in vivax malaria. In vivax and falciparum malaria, PS IgM and IgG on admission correlated inversely with admission and nadir hemoglobin, controlling for parasitemia and fever duration. PS IgM and IgG were also increased in volunteers infected with blood-stage P. vivax and P. falciparum, and were higher in P. vivax infection.

    CONCLUSIONS: PS antibodies are higher in vivax than falciparum malaria, correlate inversely with hemoglobin, and may contribute to the early loss of uninfected red blood cells found in malarial anemia from both species.

    Matched MeSH terms: Malaria, Vivax/complications*
  20. Auburn S, Getachew S, Pearson RD, Amato R, Miotto O, Trimarsanto H, et al.
    J Infect Dis, 2019 Oct 22;220(11):1738-1749.
    PMID: 30668735 DOI: 10.1093/infdis/jiz016
    The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.
    Matched MeSH terms: Malaria, Vivax/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links