Displaying publications 41 - 60 of 2090 in total

Abstract:
Sort:
  1. Mustafa S, Abd-Aziz N, Saw WT, Liew SY, Yusoff K, Shafee N
    Vaccines (Basel), 2020 Dec 07;8(4).
    PMID: 33297428 DOI: 10.3390/vaccines8040742
    Enterovirus 71 (EV71) is the major causative agent in hand, foot, and mouth disease (HFMD), and it mainly infects children worldwide. Despite the risk, there is no effective vaccine available for this disease. Hence, a recombinant protein construct of truncated nucleocapsid protein viral protein 1 (NPt-VP1198-297), which is capable of inducing neutralizing antibody against EV71, was evaluated in a mouse model. Truncated nucleocapsid protein Newcastle disease virus that was used as immunological carrier fused to VP1 of EV71 as antigen. The recombinant plasmid carrying corresponding genes was constructed by recombinant DNA technology and the corresponding protein was produced in Escherichia coli expression system. The recombinant NPt-VP1198-297 protein had elicited neutralizing antibodies against EV71 with the titer of 1:16, and this result is higher than the titer that is elicited by VP1 protein alone (1:8). It was shown that NPt containing immunogenic epitope(s) of VP1 was capable of inducing a greater functional immune response when compared to full-length VP1 protein alone. It was capable to carry larger polypeptide compared to full-length NP protein. The current study also proved that NPt-VP1198-297 protein can be abundantly produced in recombinant protein form by E. coli expression system. The findings from this study support the importance of neutralizing antibodies in EV71 infection and highlight the potential of the recombinant NPt-VP1198-297 protein as EV71 vaccine.
    Matched MeSH terms: Mice
  2. Ninyio NN, Ho KL, Ong HK, Yong CY, Chee HY, Hamid M, et al.
    Vaccines (Basel), 2020 Jun 04;8(2).
    PMID: 32512923 DOI: 10.3390/vaccines8020275
    Chimeric virus-like particles (VLPs) have been widely exploited for various purposes including their use as vaccine candidates, particularly due to their ability to induce stronger immune responses than VLPs consisting of single viral proteins. In the present study, VLPs of the Macrobrachium rosenbergii nodavirus (MrNV) capsid protein (Nc) displaying the hepatitis B virus "a" determinant (aD) were produced in Spodoptera frugiperda (Sf9) insect cells. BALB/c mice immunised with the purified chimeric Nc-aD VLPs elicited a sustained titre of anti-aD antibody, which was significantly higher than that elicited by a commercially available hepatitis B vaccine and Escherichia coli-produced Nc-aD VLPs. Immunophenotyping showed that the Sf9-produced Nc-aD VLPs induced proliferation of cytotoxic T-lymphocytes and NK1.1 natural killer cells. Furthermore, enzyme-linked immunospot (ELISPOT)analysis showed the presence of antibody-secreting memory B cells in the mice splenocytes stimulated with the synthetic aD peptide. The significant humoral, natural killer cell and memory B cell immune responses induced by the Sf9-produced Nc-aD VLPs suggest that they present good prospects for use as a hepatitis B vaccine candidate.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  3. Su YC, Wan KL, Mohamed R, Nathan S
    Vaccine, 2010 Jul 12;28(31):5005-11.
    PMID: 20546831 DOI: 10.1016/j.vaccine.2010.05.022
    Burkholderia pseudomallei is resistant to a wide range of antibiotics, leading to relapse and recrudescence of melioidosis after cessation of antibiotic therapy. More effective immunotherapies are needed for better management of melioidosis. We evaluated the prophylactic potential of the immunogenic outer membrane protein Omp85 as a vaccine against murine melioidosis. Immunization of BALB/c mice with recombinant Omp85 (rOmp85) triggered a Th2-type immune response. Up to 70% of the immunized animals were protected against infectious challenge of B. pseudomallei with reduced bacterial load in extrapulmonary organs. Mouse anti-rOmp85 promoted complement-mediated killing and opsonophagocytosis of B. pseudomallei by human polymorphonuclear cells. In conclusion, we demonstrated that B. pseudomallei Omp85 is potentially able to induce protective immunity against melioidosis.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  4. Mariappan V, Vellasamy KM, Thimma JS, Hashim OH, Vadivelu J
    Vaccine, 2010 Feb 3;28(5):1318-24.
    PMID: 19944788 DOI: 10.1016/j.vaccine.2009.11.027
    Burkholderia cepacia is an opportunistic human pathogen associated with lung infections. Secretory proteins of B. cepacia are known to be involved in virulence and may mediate important host-pathogen interactions. In the present study, secretory proteins isolated from B. cepacia culture supernatant were separated using two-dimensional gel electrophoresis, followed by Western blot analysis to identify the immunogenic proteins. Mice antibodies raised to B. cepacia inactivated whole bacteria, outer membrane protein and culture filtrate antigen detected 74, 104 and 32 immunogenic proteins, respectively. Eighteen of these immunogenic proteins which reacted with all three antibodies were identified and might be potential molecules as a diagnostic marker or a putative candidate vaccine against B. cepacia infections.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  5. Rapeah S, Norazmi MN
    Vaccine, 2006 Apr 24;24(17):3646-53.
    PMID: 16494975 DOI: 10.1016/j.vaccine.2006.01.053
    Recombinant Mycobacterium bovis bacille Calmette-Guèrin (rBCG) expressing the malarial epitopes F2R(II)EBA and (NANP)3 as well as two T cell epitopes of the M. tuberculosis ESAT-6 antigen, generated in favour of mycobacterium codon usage elicited specific immune response against these epitopes. Immunised Balb/c mice demonstrated an increase in almost all of the IgG subclasses against both malarial epitopes and enhanced splenocyte proliferative response against the malarial epitopes as well as selected peptides of ESAT-6. Furthermore, flow cytometric analyses showed elevated numbers of CD4+ lymphocytes expressing IFN-gamma and IL-2 against the ESAT-6 peptides, suggesting a specific Th1-mediated response. This study demonstrated that expressing malarial and TB epitopes in a single rBCG construct induced appropriate humoral and cellular immune response against immunogenic epitopes from both organisms.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  6. Ravichandran M, Ali SA, Rashid NH, Kurunathan S, Yean CY, Ting LC, et al.
    Vaccine, 2006 May 1;24(18):3750-61.
    PMID: 16102875
    In this paper, we describe the development of VCUSM2, a live metabolic auxotroph of Vibrio cholerae O139. Auxotrophy was achieved by mutating a house keeping gene, hemA, that encodes for glutamyl-tRNA reductase, an important enzyme in the C5 pathway for delta-aminolevulenic acid (ALA) biosynthesis, which renders this strain dependent on exogenous ALA for survival. Experiments using the infant mouse and adult rabbit models show that VCUSM2 is a good colonizer of the small intestine and elicits greater than a four-fold rise in vibriocidal antibodies in vaccinated rabbits. Rabbits vaccinated with VCUSM2 were fully protected against subsequent challenge with 1 x 10(11) CFU of the virulent wild type (WT) strain. Experiments using ligated ileal loops of rabbits show that VCUSM2 is 2.5-fold less toxic at the dose of 1 x 10(6) CFU compared to the WT strain. Shedding of VCUSM2 in rabbits were found to occur for no longer than 4 days and its maximum survival rate in environmental waters is 8 days compared to the greater than 20 days for the WT strain. VCUSM2 is thus a potential vaccine candidate against infection by V. cholerae O139.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  7. Lim PY, Hickey AC, Jamiluddin MF, Hamid S, Kramer J, Santos R, et al.
    Vaccine, 2015 Nov 4;33(44):6017-24.
    PMID: 26271825 DOI: 10.1016/j.vaccine.2015.05.108
    A vaccine against human enterovirus 71 (EV-A71) is urgently needed to combat outbreaks of EV-A71 and in particular, the serious neurological complications that manifest during these outbreaks. In this study, an EV-A71 virus-like-particle (VLP) based on a B5 subgenogroup (EV-A71-B5 VLP) was generated using an insect cell/baculovirus platform. Biochemical analysis demonstrated that the purified VLP had a highly native procapsid structure and initial studies in vivo demonstrated that the VLPs were immunogenic in mice. The impact of VLP immunization on infection was examined in non-human primates using a VLP prime-boost strategy prior to EV-A71 challenge. Rhesus macaques were immunized on day 0 and day 21 with VLPs (100 μg/dose) containing adjuvant or with adjuvant alone (controls), and were challenged with EV-A71 on day 42. Complete blood counts, serum chemistry, magnetic resonance imaging (MRI) scans, and histopathology results were mostly normal in vaccinated and control animals after virus challenge demonstrating that the fatal EV-A71-B3 clinical isolate used in this study was not highly virulent in rhesus macaques. Viral genome and/or infectious virus were detected in blood, spleen or brain of two of three control animals, but not in any specimens from the vaccinated animals, indicating that VLP immunization prevented systemic spread of EV-A71 in rhesus macaques. High levels of IgM and IgG were detected in VLP-vaccinated animals and these responses were highly specific for EV-A71 particles and capsid proteins. Serum from vaccinated animals also exhibited similar neutralizing activity against different subgenogroups of EV-A71 demonstrating that the VLPs induced cross-neutralizing antibodies. In conclusion, our EV-A71-B5 VLP is safe, highly immunogenic, and prevents systemic EV-A71-B3 infection in nonhuman primates making it a viable attractive vaccine candidate for EV-A71.
    Matched MeSH terms: Mice
  8. Nyon MP, Du L, Tseng CK, Seid CA, Pollet J, Naceanceno KS, et al.
    Vaccine, 2018 03 27;36(14):1853-1862.
    PMID: 29496347 DOI: 10.1016/j.vaccine.2018.02.065
    Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 2040 patients and caused 712 deaths since its first appearance in 2012, yet neither pathogen-specific therapeutics nor approved vaccines are available. To address this need, we are developing a subunit recombinant protein vaccine comprising residues 377-588 of the MERS-CoV spike protein receptor-binding domain (RBD), which, when formulated with the AddaVax adjuvant, it induces a significant neutralizing antibody response and protection against MERS-CoV challenge in vaccinated animals. To prepare for the manufacture and first-in-human testing of the vaccine, we have developed a process to stably produce the recombinant MERS S377-588 protein in Chinese hamster ovary (CHO) cells. To accomplish this, we transfected an adherent dihydrofolate reductase-deficient CHO cell line (adCHO) with a plasmid encoding S377-588 fused with the human IgG Fc fragment (S377-588-Fc). We then demonstrated the interleukin-2 signal peptide-directed secretion of the recombinant protein into extracellular milieu. Using a gradually increasing methotrexate (MTX) concentration to 5 μM, we increased protein yield by a factor of 40. The adCHO-expressed S377-588-Fc recombinant protein demonstrated functionality and binding specificity identical to those of the protein from transiently transfected HEK293T cells. In addition, hCD26/dipeptidyl peptidase-4 (DPP4) transgenic mice vaccinated with AddaVax-adjuvanted S377-588-Fc could produce neutralizing antibodies against MERS-CoV and survived for at least 21 days after challenge with live MERS-CoV with no evidence of immunological toxicity or eosinophilic immune enhancement. To prepare for large scale-manufacture of the vaccine antigen, we have further developed a high-yield monoclonal suspension CHO cell line.
    Matched MeSH terms: Mice
  9. Lee MHP, Tan CW, Tee HK, Ong KC, Sam IC, Chan YF
    Vaccine, 2021 03 19;39(12):1708-1720.
    PMID: 33640144 DOI: 10.1016/j.vaccine.2021.02.024
    Enterovirus A71 (EV-A71) causes hand, foot and mouth disease (HFMD) in young children. It is associated with severe neurological complications and death. This study aims to develop a live-attenuated vaccine by codon deoptimization (CD) and codon-pair deoptimization (CPD) of EV-A71. CD is generated by introducing the least preferred codons for amino acids while CPD increases the presence of underrepresented codon pairs in the specific genes. CD and CPD chimeras were generated by synonymous mutations at the VP2, VP3, VP1 and 2A gene regions, designated as XYZ. All twelve deoptimized viruses were viable with similar replication kinetics, but the plaque sizes were inversely proportional to the level of deoptimization. All the deoptimized viruses showed attenuated growth in vitro with reduced viral protein expression at 48 h and lower viral RNA at 39 °C. Six-week-old ICR mice were immunized intraperitoneally with selected CD and CPD X and XY vaccine candidates covering the VP2-VP3 and VP2-VP3-VP1 genes, respectively. All vaccine candidates elicited high anti-EV-A71 IgG levels similar to wild-type (WT) EV-A71. The CD X and CPD X vaccines produced robust neutralizing antibodies but not the CD XY and CPD XY. On lethal challenge, offspring of mice immunized with WT, CD X and CPD X were fully protected, but the CD XY- and CPD XY-vaccinated mice had delayed symptoms and eventually died. Similarly, active immunization of 1-day-old suckling mice with CD X, CPD X and CD XY vaccine candidates provided complete immune protection but CPD XY only protected 40% of the challenged mice. Histology of the muscles from CD X- and CPD X-vaccinated mice showed minimal pathology compared to extensive inflammation in the post-challenged mock-vaccinated mice. Overall, we demonstrated that the CD X and CPD X elicited good neutralizing antibodies, conferred immune protection and are promising live-attenuated vaccine candidates for EV-A71.
    Matched MeSH terms: Mice, Inbred ICR; Mice
  10. Fayaz MA, Awang-Junaidi AH, Singh J, Honaramooz A
    Ultrasound Med Biol, 2020 11;46(11):3088-3103.
    PMID: 32800471 DOI: 10.1016/j.ultrasmedbio.2020.07.010
    Testis tissue xenografting and testis cell aggregate implantation from various donor species into recipient mice are novel models for the study and manipulation of testis formation and function in target species. Thus far, the analysis of such studies has been limited to surgical or post-mortem retrieval of samples. Here we used ultrasound biomicroscopy (UBM) to monitor the development of neonatal porcine testis grafts and implants in host mice for 24 wk, and to correlate UBM and (immuno)histologic changes. This led to long-term visualization of gradual changes in volume, dimension and structure of grafts and implants; detection of a 4 wk developmental gap between grafts and implants; and revelation of differences in implant development depending on the craniocaudal site of implantation on the back of host mice. Our data support the reliability and precision of UBM for longitudinal study of transplants, which eliminates the need for frequent surgical sampling.
    Matched MeSH terms: Mice
  11. Teoh SL, Das S
    Tumour Biol., 2016 Nov;37(11):14363-14380.
    PMID: 27623943
    Obesity continues to be a major global problem. Various cancers are related to obesity and proper understanding of their aetiology, especially their molecular tumour biology is important for early diagnosis and better treatment. Genes play an important role in the development of obesity. Few genes such as leptin, leptin receptor encoded by the db (diabetes), pro-opiomelanocortin, AgRP and NPY and melanocortin-4 receptors and insulin-induced gene 2 were linked to obesity. MicroRNAs control gene expression via mRNA degradation and protein translation inhibition and influence cell differentiation, cell growth and cell death. Overexpression of miR-143 inhibits tumour growth by suppressing B cell lymphoma 2, extracellular signal-regulated kinase-5 activities and KRAS oncogene. Cancers of the breast, uterus, renal, thyroid and liver are also related to obesity. Any disturbance in the production of sex hormones and insulin, leads to distortion in the balance between cell proliferation, differentiation and apoptosis. The possible mechanism linking obesity to cancer involves alteration in the level of adipokines and sex hormones. These mediators act as biomarkers for cancer progression and act as targets for cancer therapy and prevention. Interestingly, many anti-cancerous drugs are also beneficial in treating obesity and vice versa. We also reviewed the possible link in the mechanism of few drugs which act both on cancer and obesity. The present review may be important for molecular biologists, oncologists and clinicians treating cancers and also pave the way for better therapeutic options.
    Matched MeSH terms: Mice
  12. Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, et al.
    Tuberculosis (Edinb), 2019 03;115:26-41.
    PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003
    Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
    Matched MeSH terms: Mice
  13. Tirado Y, Puig A, Alvarez N, Borrero R, Aguilar A, Camacho F, et al.
    Tuberculosis (Edinb), 2016 12;101:44-48.
    PMID: 27865396 DOI: 10.1016/j.tube.2016.07.017
    Tuberculosis (TB) remains an important cause of mortality and morbidity. The TB vaccine, BCG, is not fully protective against the adult form of the disease and is unable to prevent its transmission although it is still useful against severe childhood TB. Hence, the search for new vaccines is of great interest. In a previous study, we have shown that proteoliposomes obtained from Mycobacterium smegmatis (PLMs) induced cross reactive humoral and cellular response against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLMs, a murine model of progressive pulmonary TB was used. Animals immunized with PLMs with and without alum (PLMs/PLMsAL respectively) showed protection compared to non-immunized animals. Mice immunized with PLMsAL induced similar protection as that of BCG. Animals immunized with BCG, PLMs and PLMsAL showed a significant decrease in tissue damage (percentage of pneumonic area/lung) compared to non-immunized animals, with a more prominent effect in BCG vaccinated mice. The protective effect of the administration of PLMs in mice supports its future evaluation as experimental vaccine candidate against Mtb.
    Matched MeSH terms: Mice, Inbred BALB C
  14. Shrivastava AK, Kumar S, Smith WA, Sahu PS
    Trop Parasitol, 2017 Jan-Jun;7(1):8-17.
    PMID: 28459010 DOI: 10.4103/2229-5070.202290
    Cryptosporidiosis is a gastrointestinal illness caused by the protozoan parasite Cryptosporidium species, which is a leading cause of diarrhea in a variety of vertebrate hosts. The primary mode of transmission is through oral routes; infections spread with the ingestion of oocysts by susceptible animals or humans. In humans, Cryptosporidium infections are commonly found in children and immunocompromised individuals. The small intestine is the most common primary site of infection in humans while extraintestinal cryptosporidiosis occurs in immunocompromised individuals affecting the biliary tract, lungs, or pancreas. Both innate and adaptive immune responses play a critical role in parasite clearance as evident from studies with experimental infection in mice. However, the cellular immune responses induced during human infections are poorly understood. In this article, we review the currently available information with regard to epidemiology, diagnosis, therapeutic interventions, and strategies being used to control cryptosporidiosis infection. Since cryptosporidiosis may spread through zoonotic mode, we emphasis on more epidemiological surveillance-based studies in developing countries with poor sanitation and hygiene. These epidemiological surveys must incorporate fecal source tracking measures to identify animal and human populations contributing significantly to the fecal burden in the community, as mitigation measures differ by host type.
    Matched MeSH terms: Mice
  15. Suppian R, Nor NM
    Trop Life Sci Res, 2013 Aug;24(1):9-18.
    PMID: 24575238 MyJurnal
    Heterologous prime-boost immunisation strategies can evoke powerful antibody responses and may be of value in developing an improved malaria vaccine. Herein, we show that an immunisation protocol that primes Balb/c mice with a recombinant Bacille Calmette-Guérin (rBCG) vaccine consisting of a plasmid encoding a synthetic fragment of the ESAT-6 epitope of Mycobacterium tuberculosis, the fragment 2 region II of erythrocyte-binding antigen (F2RIIEBA) and the three repeat sequences of the circumsporozoite protein (NANP)3 of Plasmodium falciparum before subsequently boosting the mice with either two doses of the rBCG clone or with a DNA vaccine expressing the native form of F2RIIEBA generating higher serum anti-F2RIIEBA antibody levels than an immunisation protocol that calls for a homologous prime-boost with two doses of rBCG. These results demonstrate the potential of DNA vaccination in boosting the antibody response to a recombinant vaccine expressing multiple epitopes.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  16. Dahari DE, Salleh RM, Mahmud F, Chin LP, Embi N, Sidek HM
    Trop Life Sci Res, 2016 Aug;27(2):53-71.
    PMID: 27688851 MyJurnal DOI: 10.21315/tlsr2016.27.2.5
    Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition, our study suggests that DBP is in part the bioactive component contributing to the anti-malarial activity displayed by H11809 acting through the inhibition of GSK3β.
    Matched MeSH terms: Mice
  17. Hamdan NE, Ng YL, Lee WB, Tan CS, Khan FA, Chong YL
    Trop Life Sci Res, 2017 Jan;28(1):151-159.
    PMID: 28228923 MyJurnal DOI: 10.21315/tlsr2017.28.1.11
    Rodents belong to the order Rodentia, which consists of three families in Borneo (i.e., Muridae, Sciuridae and Hystricidae). These include rats, mice, squirrels, and porcupines. They are widespread throughout the world and considered pests that harm humans and livestock. Some rodent species are natural reservoirs of hantaviruses (Family: Bunyaviridae) that can cause zoonotic diseases in humans. Although hantavirus seropositive human sera were reported in Peninsular Malaysia in the early 1980s, information on their infection in rodent species in Malaysia is still lacking. The rodent populations in residential and forested areas in Sarawak were sampled. A total of 108 individuals from 15 species of rodents were collected in residential (n = 44) and forested ( n = 64) areas. The species diversity of rodents in forested areas was significantly higher (H = 2.2342) compared to rodents in residential areas (H = 0.64715) (p < 0.001 of Zar-t test based on the Shannon index). Rattus rattus and Sundamys muelleri were present at high frequencies in both localities. An enzyme-linked immunosorbent assay (ELISA) showed that hantavirus-targeting antibodies were absent from 53 tested serum samples. This is the first report of hantavirus seroprevalence surveillance in rodent populations in Sarawak, East Malaysia. The results suggested that hantavirus was not circulating in the studied rodent populations in Sarawak, or it was otherwise at a low prevalence that is below the detection threshold. It is important to remain vigilant because of the zoonotic potential of this virus and its severe disease outcome. Further studies, such as molecular detection of viral genetic materials, are needed to fully assess the risk of hantavirus infection in rodents and humans in this region of Malaysia.
    Matched MeSH terms: Mice
  18. Oktiansyah R, Juliandi B, Widayati KA, Juniantito V
    Trop Life Sci Res, 2018 Jul;29(2):1-11.
    PMID: 30112137 DOI: 10.21315/tlsr2018.29.2.1
    Neuronal cell death can occur in a tissue or organ, including the brain, which affects memory. The objectives of this study were to determine the dose of bee venom that causes neuronal death and analyse the alteration of mouse behaviour, focusing in particular on spatial memory. Fifteen male mice of Deutsche Denken Yoken (DDY) strain were divided into control and treatment groups. Bee venom was injected six times for two weeks intraperitoneally with 1.88 mg/kg, 3.76 mg/kg, 5.6 mg/kg, and 7.48 mg/kg doses of venom. Brain histology was studied using haematoxylin-eosin stained paraffin embedded 5 μm coronal sections. A Y maze test was used to assay behaviour. Parameters observed were the number of dead neurons and the percentage of mice with altered behaviour. ANOVA showed that the effects of bee venom were significantly different in the case of the neuronal death parameter but were not significantly different in the case of the mice behaviour parameter. Duncan's Multiple Range Test (DMRT) demonstrated that P4 (7.48 mg/kg) gave the highest effect of bee venom to promote neuronal death.
    Matched MeSH terms: Mice
  19. Abdullah MIC, Sah ASRM, Haris H
    Trop Life Sci Res, 2020 Oct;31(3):109-125.
    PMID: 33214859 DOI: 10.21315/tlsr2020.31.3.8
    An investigation study was conducted in Bukit Merah Reservoir (BMR) for the assessment of arsenic concentration in the surface sediment in 23 sampling stations. The sediment samples were digested and analysed for arsenic using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Sediment parameters such as pH (4.42 ± 0.71), redox potential (121.77 ± 42.45 mV), conductivity (205.7 ± 64.07 μS cm-1) and organic matter (25.35 ± 9.34%) were also examined. The main objectives of this study are to determine the arsenic distribution and concentration and at the same time to assess the enrichment of arsenic using the geoaccumulation index (I
    geo
    ) and enrichment factor (EF). This study shows the total arsenic concentration in the surface sediment of BMR is 4.302 ± 2.43 mg kg-1 and found to be below the threshold value of Canadian Interim Sediment Quality Guidelines (ISQG). High arsenic concentration is recorded near the southern part of the lake where anthropogenic activities are prevalent. Based on I
    geo
    , 13% of sampling stations are categorised as moderately polluted, 52.2% as unpolluted to moderately polluted and the rest is categorised as unpolluted. EF shows 78.3% stations are classified as extremely high enrichment and the rest as very high enrichment. This finding provides important information on the status of arsenic contamination in BMR and creating awareness concerning the conservation and management of the reservoir in the future.
    Matched MeSH terms: Mice
  20. Putra WE, Rifa'i M
    Trop Life Sci Res, 2020 Jul;31(2):175-185.
    PMID: 32922674 DOI: 10.21315/tlsr2020.31.2.9
    Aplastic anemia, life-threatened disease, is a hematologic disorder characterised by bone marrow hypoplasia. Multiple modalities such as bone marrow transplantation and immunosuppression treatment have been proposed to ameliorate this entity, however it remains ineffective. Sambucus, a group of herb plants, possesses a broad spectrum of medicinal properties such as antioxidant, insulin-like activity, anticancer and antiviral. However, the study about its activity toward aplastic anemia incidence is based on limited data. Thus, the research aim of this study was to evaluate the immunomodulatory activities of Sambucus javanica in chloramphenicol-induced anemia aplastic mouse model. In this present study, BALB/c mice were administrated with chloramphenicol (CMP) to induce aplastic anemia then followed by S. javanica extracts treatment. Additionally, cellular and molecular aspects were evaluated by flow cytometry and Hematoxylin-Eosin staining. Further analysis showed that S. javanica extracts could promote the population number of regulatory T-cells and naive cytotoxic T-cells. Moreover, those extract also reduced the inflammation and necrotic incidence in CMP-induced mouse aplastic anemia model. Together, these results suggest that S. javanica has therapeutically effect to aplastic anemia by altering the immune system as an immunomodulatory agent.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links