Displaying publications 41 - 47 of 47 in total

Abstract:
Sort:
  1. Kuah MK, Jaya-Ram A, Shu-Chien AC
    Biochim. Biophys. Acta, 2015 Mar;1851(3):248-60.
    PMID: 25542509 DOI: 10.1016/j.bbalip.2014.12.012
    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores.
    Matched MeSH terms: Fish Oils/administration & dosage; Plant Oils/administration & dosage
  2. Karupaiah T, Tan CH, Chinna K, Sundram K
    J Am Coll Nutr, 2011 Dec;30(6):511-21.
    PMID: 22331686
    OBJECTIVE: Saturated fats increase total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) and are linked to coronary artery disease risk. The effect of variance in chain length of saturated fatty acids (SFA) on coronary artery disease in human postprandial lipemia is not well elucidated.

    METHODS: A total of 20 healthy volunteers were challenged with 3 test meals, similar in fat content (~31% en) but varying in saturated SFA content and polyunsaturated/saturated fatty acid ratios (P/S). The 3 meals were lauric + myristic acid-rich (LM), P/S 0.19; palmitic acid-rich (POL), P/S 0.31; and stearic acid-rich (STE), P/S 0.22. Blood was sampled at fasted baseline and 2, 4, 5, 6, and 8 hours. Plasma lipids (triacylglycerol [TAG]) and lipoproteins (TC, LDL-C, high density lipoprotein-cholesterol [HDL-C]) were evaluated.

    RESULTS: Varying SFA in the test meal significantly impacted postprandial TAG response (p < 0.05). Plasma TAG peaked at 5 hours for STE, 4 hours for POL, and 2 hours for LM test meals. Area-under-the-curve (AUC) for plasma TAG was increased significantly after STE treatment (STE > LM by 32.2%, p = 0.003; STE > POL by 27.9%, p = 0.023) but was not significantly different between POL and LM (POL > LM by 6.0%, p > 0.05). At 2 hours, plasma HDL-C increased significantly after the LM and POL test meals compared with STE (p < 0.05). In comparison to the STE test meal, HDL-C AUC was elevated 14.0% (p = 0.005) and 7.6% (p = 0.023) by the LM and POL test meals, respectively. The TC response was also increased significantly by LM compared with both POL and STE test meals (p < 0.05).

    CONCLUSIONS: Chain length of saturates clearly mediated postmeal plasma TAG and HDL-C changes.

    Matched MeSH terms: Plant Oils/administration & dosage
  3. Thomas J
    Trop Anim Health Prod, 1972;4(2):95-101.
    PMID: 4671395
    Matched MeSH terms: Oils/administration & dosage
  4. Budin SB, Othman F, Louis SR, Bakar MA, Das S, Mohamed J
    Clinics (Sao Paulo), 2009;64(3):235-44.
    PMID: 19330251
    OBJECTIVE: This study examined the effects of palm oil tocotrienol-rich fractions on streptozotocin-induced diabetic rats.

    METHODS: Animals were divided into three groups: (i) normal non-diabetic (NDM), (ii) diabetic treated (tocotrienol-rich fractions - TRF) and (iii) diabetic untreated (non-TRF). The treatment group received oral administration of tocotrienol-rich fractions (200 mg/kg body weight) daily for eight weeks. The normal non-diabetic and the diabetic untreated groups were fed standard rat feed. Blood glucose and lipid profiles, oxidative stress markers and morphological changes of the thoracic aorta were evaluated.

    RESULTS: Tocotrienol-rich fractions treatment reduced serum glucose and glycated hemoglobin concentrations. The tocotrienol-rich fractions group also showed significantly lower levels of plasma total cholesterol, low-density lipoprotein cholesterol, and triglyceride, as compared to the untreated group. The tocotrienol-rich fractions group had higher levels of high-density lipoprotein cholesterol, as compared to the untreated group. Superoxide dismutase activity and levels of vitamin C in plasma were increased in tocotrienol-rich fractions-treated rats. The levels of plasma and aorta malondealdehyde + 4-hydroxynonenal (MDA + 4-HNE) and oxidative DNA damage were significant following tocotrienol-rich fractions treatment. Electron microscopic examination showed that the normal morphology of the thoracic aorta was disrupted in STZ-diabetic rats. Tocotrienol-rich fractions supplementation resulted in a protective effect on the vessel wall.

    CONCLUSION: These results show that tocotrienol-rich fractions lowers the blood glucose level and improves dyslipidemia. Levels of oxidative stress markers were also reduced by administration of tocotrienol-rich fractions. Vessel wall integrity was maintained due to the positive effects mediated by tocotrienol-rich fractions.

    Matched MeSH terms: Plant Oils/administration & dosage*
  5. Law KS, Azman N, Omar EA, Musa MY, Yusoff NM, Sulaiman SA, et al.
    Lipids Health Dis, 2014;13:139.
    PMID: 25163649 DOI: 10.1186/1476-511X-13-139
    Breast cancer is the most common cancer amongst Malaysian women. Both the disease and its treatment can disrupt the lives of the woman and adversely affect all aspects of life and thus can alter a woman's quality of life. The aim of this study was to examine the effect of virgin coconut oil (VCO) on the quality of life (QOL) of patients diagnosed with breast cancer.
    Matched MeSH terms: Plant Oils/administration & dosage*
  6. Ishak WMW, Katas H, Yuen NP, Abdullah MA, Zulfakar MH
    Drug Deliv Transl Res, 2019 04;9(2):418-433.
    PMID: 29667150 DOI: 10.1007/s13346-018-0522-8
    Wound healing is a physiological event that generates reconstitution and restoration of granulation tissue that ends with scar formation. As omega fatty acids are part of membrane phospholipids and participate in the inflammatory response, we investigated the effects of omega-3, omega-6, and omega-9 fatty acids in the form of oils on wound healing. Linseed (LO), evening primrose (EPO), and olive oils (OO) rich in omega-3, omega-6, and omega-9 fatty acids were formulated into emulsions and were topically applied on rats with excision wounds. All omega-3-, omega-6-, and omega-9-rich oil formulations were found to accelerate wound closure compared to untreated, with significant improvement (p 
    Matched MeSH terms: Oils/administration & dosage*
  7. Ng TK, Low CX, Kong JP, Cho YL
    Malays J Nutr, 2012 Dec;18(3):393-7.
    PMID: 24568080 MyJurnal
    Carotenoid-rich red palm oil (RPO)-based snacks have been provided to children in impoverished communities to improve their vitamin A status. The non-availabilty of information on the acceptability of RPO-based snacks by Malaysian aborigines (Orang Asli) children forms the basis of this study.
    Matched MeSH terms: Plant Oils/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links