Displaying publications 41 - 60 of 834 in total

Abstract:
Sort:
  1. Rohman A, Ariani R
    ScientificWorldJournal, 2013;2013:740142.
    PMID: 24319381 DOI: 10.1155/2013/740142
    Fourier transform infrared spectroscopy (FTIR) combined with multivariate calibration of partial least square (PLS) was developed and optimized for the analysis of Nigella seed oil (NSO) in binary and ternary mixtures with corn oil (CO) and soybean oil (SO). Based on PLS modeling performed, quantitative analysis of NSO in binary mixtures with CO carried out using the second derivative FTIR spectra at combined frequencies of 2977-3028, 1666-1739, and 740-1446 cm(-1) revealed the highest value of coefficient of determination (R (2), 0.9984) and the lowest value of root mean square error of calibration (RMSEC, 1.34% v/v). NSO in binary mixtures with SO is successfully determined at the combined frequencies of 2985-3024 and 752-1755 cm(-1) using the first derivative FTIR spectra with R (2) and RMSEC values of 0.9970 and 0.47% v/v, respectively. Meanwhile, the second derivative FTIR spectra at the combined frequencies of 2977-3028 cm(-1), 1666-1739 cm(-1), and 740-1446 cm(-1) were selected for quantitative analysis of NSO in ternary mixture with CO and SO with R (2) and RMSEC values of 0.9993 and 0.86% v/v, respectively. The results showed that FTIR spectrophotometry is an accurate technique for the quantitative analysis of NSO in binary and ternary mixtures with CO and SO.
    Matched MeSH terms: Plant Oils/analysis*; Plant Oils/classification
  2. Syam AM, Hamid HA, Yunus R, Rashid U
    ScientificWorldJournal, 2013;2013:268385.
    PMID: 24363616 DOI: 10.1155/2013/268385
    Many kinetics studies on methanolysis assumed the reactions to be irreversible. The aim of the present work was to study the dynamic modeling of reversible methanolysis of Jatropha curcas oil (JCO) to biodiesel. The experimental data were collected under the optimal reaction conditions: molar ratio of methanol to JCO at 6 : 1, reaction temperature of 60°C, 60 min of reaction time, and 1% w/w of catalyst concentration. The dynamic modeling involved the derivation of differential equations for rates of three stepwise reactions. The simulation study was then performed on the resulting equations using MATLAB. The newly developed reversible models were fitted with various rate constants and compared with the experimental data for fitting purposes. In addition, analysis of variance was done statistically to evaluate the adequacy and quality of model parameters. The kinetics study revealed that the reverse reactions were significantly slower than forward reactions. The activation energies ranged from 6.5 to 44.4 KJ mol⁻¹.
    Matched MeSH terms: Plant Oils/chemistry*
  3. KoohiKamali S, Tan CP, Ling TC
    ScientificWorldJournal, 2012;2012:475027.
    PMID: 22593688 DOI: 10.1100/2012/475027
    In this study, the methanolysis process of sunflower oil was investigated to get high methyl esters (biodiesel) content using sodium methoxide. To reach to the best process conditions, central composite design (CCD) through response surface methodology (RSM) was employed. The optimal conditions predicted were the reaction time of 60 min, an excess stoichiometric amount of alcohol to oil ratio of 25%w/w and the catalyst content of 0.5%w/w, which lead to the highest methyl ester content (100%w/w). The methyl ester content of the mixture from gas chromatography analysis (GC) was compared to that of optimum point. Results, confirmed that there was no significant difference between the fatty acid methyl ester content of sunflower oil produced under the optimized condition and the experimental value (P ≥ 0.05). Furthermore, some fuel specifications of the resultant biodiesel were tested according to American standards for testing of materials (ASTM) methods. The outcome showed that the methyl ester mixture produced from the optimized condition met nearly most of the important biodiesel specifications recommended in ASTM D 6751 requirements. Thus, the sunflower oil methyl esters resulted from this study could be a suitable alternative for petrol diesels.
    Matched MeSH terms: Plant Oils/metabolism*
  4. Leong SC, Abang F, Beattie A, Kueh RJ, Wong SK
    ScientificWorldJournal, 2012;2012:651416.
    PMID: 22629178 DOI: 10.1100/2012/651416
    Aspects of the incidence and spread of the citrus disease huanglongbing (HLB) in relation to the vector Diaphorina citri population fluctuation were studied from January 1999 to December 2001 seasons in a 0.8 ha citrus orchard at Jemukan (1° 33'N, 110° 41'E), Southwest Sarawak in Malaysia. In relation to insecticide and horticultural mineral oils (HMOs) use, levels of HLB infection rose quite rapidly over the next 3 years in the unsprayed control and less rapidly in the other treatments such as imidacloprid, nC24HMO, and triazophos/cypermethrin/chlorpyrifos. Levels of HLB as determined by Polymerase Chain Reaction (PCR) were 42.2%, 9.4%, 11.4%, and 22.7%, respectively. The effects of nC(24)HMO and conventional pesticides on the citrus psyllid population and parasitoids in citrus orchard were also determined.
    Matched MeSH terms: Plant Oils/administration & dosage
  5. Chong FC, Tey BT, Dom ZM, Ibrahim N, Rahman RA, Ling TC
    ScientificWorldJournal, 2006 Sep 07;6:1124-31.
    PMID: 16964369
    An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD) and glycerol in hexane, through a packed-bed reactor (PBR) filled with 10 kg of delipidated rice bran lipase (RBL). The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61%) was achieved at a reaction temperature of 65 masculineC, using silica gels as the water-removal agent. Thin-layer chromatography (TLC) analysis showed that the major composition of the esterified product was diacylglycerol.
    Matched MeSH terms: Plant Oils/metabolism*; Plant Oils/chemistry*
  6. Myzabella N, Fritschi L, Merdith N, El-Zaemey S, Chih H, Reid A
    Int J Occup Environ Med, 2019 10;10(4):159-173.
    PMID: 31586381 DOI: 10.15171/ijoem.2019.1576
    BACKGROUND: The palm oil industry is the largest contributor to global production of oils and fats. Indonesia and Malaysia are the largest producers of palm oil. More than a million workers are employed in this industry, yet there is a lack of information on their occupational health and safety.

    OBJECTIVE: To identify and summarize occupational hazards among oil palm plantation workers.

    METHODS: A search was carried out in June 2018 in PubMed, Web of Science, Scopus, and Ovid. Relevant publications were identified by a systematic search of four databases and relevant journals. Publications were included if they examined occupational hazards in oil palm plantation workers.

    RESULTS: 941 publications were identified; of these, 25 studies were found eligible to be included in the final review. Of the 25 studies examined, 19 were conducted in Malaysia, 2 in Costa Rica, and one each in Ghana, Indonesia, Myanmar, Papua New Guinea, and Cameroon. Oil palm plantation workers were found to be at risk of musculoskeletal conditions, injuries, psychosocial disorders, and infectious diseases such as malaria and leptospirosis. In addition, they have potential exposure to paraquat and other pesticides.

    CONCLUSION: In light of the potential of palm oil for use as a biofuel, this is an industry with strong growth potential. The workers are exposed to various occupational hazards. Further research and interventions are necessary to improve the working conditions of this already vast and growing workforce.

    Matched MeSH terms: Plant Oils/adverse effects
  7. Mohd Ridzuan J, Aziah BD, Zahiruddin WM
    Int J Occup Environ Med, 2016 07;7(3):156-63.
    PMID: 27393322 DOI: 10.15171/ijoem.2016.699
    BACKGROUND: Leptospirosis is a zoonotic disease that is recognized as a re-emerging global public health issue, especially in tropical and subtropical countries. Malaysia, for example, has increasingly registered leptospirosis cases, outbreaks, and fatalities over the past decade. One of the major industries in the country is the palm oil sector, which employs numerous agricultural workers. These laborers are at a particularly high risk of contracting the disease.

    OBJECTIVE: To identify the work environment-related risk factors for leptospirosis infection among oil palm plantation workers in Malaysia.

    METHODS: A cross-sectional study involving 350 workers was conducted. The participants were interviewed and administered a microscopic agglutination test. Seropositivity was determined using a cut-off titer of ≥1:100.

    RESULTS: 100 of 350 workers tested positive for leptospiral antibodies, hence, a seroprevalence of 28.6% (95% CI 23.8% to 33.3%). The workplace environment-related risk factors significantly associated with seropositive leptospirosis were the presence of cows in plantations (adjusted OR 4.78, 95% CI 2.76 to 8.26) and the presence of a landfill in plantations (adjusted OR 2.04, 95% CI 1.22 to 3.40).

    CONCLUSION: Preventing leptospirosis incidence among oil palm plantation workers necessitates changes in policy on work environments. Identifying modifiable factors may also contribute to the reduction of the infection.

    Matched MeSH terms: Plant Oils
  8. Leong XF, Najib MN, Das S, Mustafa MR, Jaarin K
    Tohoku J. Exp. Med., 2009 Sep;219(1):71-8.
    PMID: 19713687
    Oxidization of dietary cooking oil increases the risk of cardiovascular diseases such as hypertension by increasing the formation oxidative oxygen radicals. The aim of study was to investigate the effects of repeatedly heated palm oil on blood pressure, plasma nitrites, and vascular reactivity. Nitrites were measured, as an indirect marker for nitric oxide production. Male Sprague-Dawley rats were divided into four groups: control group fed with basal diet and other three groups fortified with 15% weight/weight fresh palm oil (FPO), palm oil heated five times (5HPO) or palm oil heated ten times (10HPO) for 24 weeks. The oil was heated to 180 degrees C for 10 min. Blood pressure was measured at baseline and at intervals of four weeks for 24 weeks using non-invasive tail-cuff method. Following 24 weeks, the rats were sacrificed and thoracic aortas were dissected for measurement of vascular reactivity. Blood pressure was elevated significantly (p < 0.05) in 5HPO and 10HPO groups, with the 10HPO group showing higher values. Aortic rings from animals fed with heated oil showed diminished relaxation in response to acetylcholine or sodium nitroprusside, and greater contraction to phenylephrine. Acetylcholine and sodium nitroprusside cause endothelium-dependent and endothelium-independent relaxation, respectively. Relaxation responses remained unaltered in the FPO group, with the attenuated contractile response to phenylephrine, compared to control group. FPO increased plasma nitrites by 28%, whereas 5HPO and 10HPO reduced them by 25% and 33%, respectively. Intake of repeatedly heated palm oil causes an increase in blood pressure, which may be accounted for by the attenuated endothelium-dependent vasorelaxant response.
    Matched MeSH terms: Plant Oils/administration & dosage; Plant Oils/pharmacology*; Plant Oils/chemistry*
  9. Hanifah AL, Ismail SH, Ho TM
    PMID: 21073028
    Four commercial repellents were evaluated in the laboratory against Leptotrombidium deliense chiggers. Both in vitro and in vivo methods were used to determine repellency of the compounds. The repellents were Kellis (containing citronella oil, jojoba oil and tea tree oil), Kaps (containing citronella oil), BioZ (containing citronella oil, geranium oil and lemon grass oil) and Off (containing DEET). The combination of three active ingredients: citronella oil, geranium oil, lemon grass oil gave the highest repellency (87%) followed by DEET (84%). In vitro repellencies ranged from 73% to 87%. There was no significant difference between the four products. All the repellents had 100% in vivo repellency compared to 41-57% for the controls.
    Matched MeSH terms: Plant Oils
  10. Ho TM, Fauziah MK
    PMID: 8362291
    Two commercial repellants were evaluated in the laboratory against Leptotrombidium fletcheri chiggers. The active ingredient in one was DEET and in the other was citrus oil. Excito-toxicity effect was studied and it was determined by the time ("escape time") chiggers took to move off filter papers treated with the repellants. All chiggers exposed on filter papers treated with DEET died and did not move off the treated papers. None of the chiggers that were placed on papers treated with citrus oil were killed. Escape times on papers treated with a 2-sec spray of citrus oil were longer than those for the 4- and 8-sec sprays. The weights of citrus oil deposited increased with increasing spray times. Electron microscopy showed that the repellants had no effect on the texture of the filter papers. It was concluded that the spray containing DEET was more effective; however, both repellants should be further evaluated under field conditions for protection against chigger bites.
    Matched MeSH terms: Plant Oils
  11. Yacob S, Ali Hassan M, Shirai Y, Wakisaka M, Subash S
    Sci Total Environ, 2006 Jul 31;366(1):187-96.
    PMID: 16125215
    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.
    Matched MeSH terms: Plant Oils/metabolism*
  12. Cazzolla Gatti R, Liang J, Velichevskaya A, Zhou M
    Sci Total Environ, 2019 Feb 20;652:48-51.
    PMID: 30359800 DOI: 10.1016/j.scitotenv.2018.10.222
    The globalization of the palm oil trade poses a menace to the ecosystem integrity of Southeast Asia. In this short communication, we briefly discuss why palm oil certifications may have failed as an effective means to halt forest degradation and biodiversity loss. From a comparison of multiple new datasets, we analysed recent tree loss in Indonesia, Malaysia, and Papua New Guinea, and discovered that, from 2001 to 2016, about 40% of the area located in certified concessions suffered from habitat degradation, deforestation, fires, or other tree damages. Certified concessions have been subject to more tree removals than non-certified ones. We also detect significant tree loss before and after the start of certification schemes. Beyond non-governmental organisations' concern that Roundtable on Sustainable Palm Oil (RSPO) and Palm Oil Innovation Group (POIG) certifications allow ongoing clearance of any forest not identified as of high conservation values (HCV) or high carbon stock (HCS), we suggest an alarming and previously overlooked situation, such as that current "sustainable palm oil" is often associated with recent habitat degradation and forest loss. In other words, certified palm oil production may not be so sustainable.
    Matched MeSH terms: Plant Oils
  13. Tan YL, Hameed BH, Abdullah AZ
    Sci Total Environ, 2020 Feb 10;703:134902.
    PMID: 31753498 DOI: 10.1016/j.scitotenv.2019.134902
    Catalysts prepared from industrial wastes rich in Fe, Ca, Si, and Al were used in catalytic upgrading of pyrolysis vapour derived from durian shell and their effect on product yield and properties were compared. With same silica-to-alumina ratio, catalyst prepared from oil palm ash (AS-OPA) with lower Fe and Ca contents gave higher liquid yield (8.32 wt%) with alcohols (28.90%), hydrocarbons (46.00%), and nitrogen-containing compounds (21.46%) while catalyst prepared from electric arc furnace slag (AS-EAF) with higher Fe and Ca contents produced lower liquid yield (50.21 wt%) with high amount of esters (25.80%) and hydrocarbons (72.82%). The presence of AS-OPA and AS-EAF catalysts enhanced deoxygenation degree of bio-oil to 81.13% and 85.49%, respectively. The catalytic performance of AS-EAF at different temperatures (400-600 °C) and AS-EAF/durian shell ratios (1:30, 2:30, 3:30) was investigated. Increasing catalytic temperature enhanced production of bio-oil, reduced oxygenates and enhanced formation of esters. The liquid yield and yield of esters decreased with increasing catalyst loading. Hydrocarbons (mainly neopentane) were the major chemical compounds found in bio-oil produced over AS-EAF. Besides that, AS-EAF showed good deoxygenation performance with highest selectivity of hydrocarbons at 500 °C and AS-EAF/durian shell ratio of 2:30. Catalytic fast pyrolysis of durian shell using waste-derived catalysts is an effective waste management strategy as the bio-oil produced can be a potential alternative source of energy or chemical feedstocks.
    Matched MeSH terms: Plant Oils
  14. Wong WY, Lim S, Pang YL, Shuit SH, Chen WH, Lee KT
    Sci Total Environ, 2020 Jul 20;727:138534.
    PMID: 32334218 DOI: 10.1016/j.scitotenv.2020.138534
    Interest in biodiesel research has escalated over the years due to dwindling fossil fuel reserves. The implementation of a carbon-based solid acid catalyst in biodiesel production eradicates the separation problems associated with homogeneous catalysis. However, its application in the glycerol-free interesterification process for biodiesel production is still rarely being studied in the literature. In this study, novel environmentally benign catalysts were prepared from oil palm empty fruit bunch (OPEFB) derived activated carbon (AC) which is sustainable and low cost via direct sulfonation using concentrated sulfuric acid. The effects of synthesizing variables such as carbonization and sulfonation temperatures with different holding times towards the fatty acid methyl ester (FAME) yield in interesterification reaction with oleic acid and methyl acetate were investigated in detail. It was found that the optimum carbonization temperature and duration together with sulfonation temperature and duration were 600 °C, 3 h, 100 °C and 6 h, respectively. The catalyst possessed an amorphous structure with a high total acid density of 9.0 mmol NaOH g-1 due to the well-developed porous framework structure of the carbon support. Under these optimum conditions, the OPEFB derived solid acid catalyst recorded an excellent catalytic activity of 50.5% methyl oleate yield at 100 °C after 8 h with 50:1 methyl acetate to oleic acid molar ratio and 10 wt% catalyst dosage. The heterogeneous acid catalyst derived from OPEFB had shown promising properties that made them highly suitable for cost-effective and environmental-friendly glycerol-free biodiesel production.
    Matched MeSH terms: Plant Oils
  15. Yeap WC, Lee FC, Shabari Shan DK, Musa H, Appleton DR, Kulaveerasingam H
    Plant J, 2017 Jul;91(1):97-113.
    PMID: 28370622 DOI: 10.1111/tpj.13549
    The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp. Transcriptional activation of EgWRI1-1 encoding a key master regulator that activates expression of oil biosynthesis genes, is activated by three ABA-responsive transcription factors, EgNF-YA3, EgNF-YC2 and EgABI5. Overexpression of EgWRI1-1 and its activators in Arabidopsis accelerated flowering, increased seed size and oil content, and altered expression levels of oil biosynthesis genes. Protein-protein interaction experiments demonstrated that EgNF-YA3 interacts directly with EgWRI1-1, forming a transcription complex with EgNF-YC2 and EgABI5 to modulate transcription of oil biosynthesis pathway genes. Furthermore, EgABI5 acts downstream of EgWRKY40, a repressor that interacts with EgWRKY2 to inhibit the transcription of oil biosynthesis genes. We showed that expression of these activators and repressors in oil biosynthesis can be induced by phytohormones coordinating fruit development in oil palm. We propose a model highlighting a hormone signaling network coordinating fruit development and fatty acid biosynthesis.
    Matched MeSH terms: Plant Oils/metabolism
  16. Noor Atiqah Aizan Abd Kadir, Azrina Azlan
    MyJurnal
    Cardiovascular disease (CVD) is a major cause of disability and premature death throughout the world. This disease is commonly experienced by people with unhealthy lifestyle, stress and physical inactivity. Cholesterol has received the most attention as single risk factor of CVD. Reducing the intake of cholesterol, saturated fat, and trans faty acids may be beneficial, yet controversy is still lingering to what constituents more beneficial dietary fats. The purpose of this article is to give an overview on the impact of major dietary fatty acids on cardiovascular morbidity and mortality and to give an insightful information regarding fatty acids composition in selected fruits oils in search for novel oils as potential therapy against CVD.
    Matched MeSH terms: Plant Oils
  17. Jamal P, Alam MZ, Suhani F
    Med J Malaysia, 2008 Jul;63 Suppl A:107-8.
    PMID: 19025008
    Large quantities of agro-based liquid wastes are produced every year and their disposal is often a problem for industries. In light of that, in this study prudent effort was done to screen the agro-industrial wastes - pineapple waste (PAW) and palm oil mill effluent (POME) for valuable biophenols product. Three different solvents; ethanol, acetone and distilled water were screened in order to enhance the process. All experiments were performed using fixed process conditions of solid to solvent ratio, temperatures, time and agitation speed. Effectiveness of extraction process to produce biophenol was based on high amount with more activity. POME was selected as potential source with biophenol content of 125.42 mg/L GAE.
    Matched MeSH terms: Plant Oils/pharmacology*
  18. Loke KH
    Med J Malaysia, 1992 Jun;47(2):90-2.
    PMID: 1494338
    Matched MeSH terms: Plant Oils*
  19. Chong YH, Ng TKW
    Med J Malaysia, 1991 Mar;46(1):41-50.
    PMID: 1836037
    A major public health concern of affluent nations is the excessive consumption of dietary fats which are now closely linked to coronary heart disease. Against this scenario, the tropical oils and palm oil in particular, have been cast as major villains in the U.S.A., despite the fact that palm oil consumption there is negligible. The unsuspecting public may not realise that the call to avoid palm oil is nothing more than a trade ploy since in recent years palm oil has been very competitive and has gained a major share of the world's edible oils and fats market. Many also lose sight of the fact that, palm oil, like other edible oils and fats, is an important component of the diet. The allegation that palm oil consumption leads to raised blood cholesterol levels and is therefore atherogenic is without scientific foundation. Examination of the chemical and fatty acid composition of palm oil or its liquid fraction should convince most nutritionists that the oil has little cholesterol-raising potential. The rationale for these are: it is considered cholesterol free. its major saturated fatty acid, palmitic acid (16:0) has recently been shown to be neutral in its cholesterolaemic effect, particularly in situations where the LDL receptors have not been down-regulated by dietary means or through a genetic effect. palm oil contains negligible amounts (less than 1.5%) of the hypercholesterolemic saturated fatty acids, namely lauric acid (12:0) and myristic acid (14:0). it has moderately rich amounts of the hypocholesterolaemic, monounsaturated oleic acid (18:1, omega-9) and adequate amounts of linoleic acid. (18:2, omega-6). It contains minor components such as the vitamin E tocotrienols which are not only powerful antioxidants but are also natural inhibitors of cholesterol synthesis. Feeding experiments in various animal species and humans also do not support the allegation that palm oil is atherogenic. On the contrary, palm oil consumption reduces blood cholesterol in comparison with the traditional sources of saturated fats such as coconut oil, dairy and animal fats. In addition, palm oil consumption may raise HDL levels and reduce platelet aggregability. As with all nutrients, there is a need to obtain a balance of different fatty acids found in fats in edible oils and other food sources. There is no single ideal source of fat that answers to the recent American Heart Association's call to reflect a 1:1:1 ratio of saturated, monounsaturated and polyunsaturated fats in relation to the recommended dietary fat intake of 30% of calories or less.(ABSTRACT TRUNCATED AT 400 WORDS)
    Matched MeSH terms: Plant Oils/pharmacology*
  20. Chandrasekharan N
    Med J Malaysia, 1988 Mar;43(1):1-3.
    PMID: 3244313
    Matched MeSH terms: Plant Oils*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links