Displaying publications 41 - 60 of 130 in total

Abstract:
Sort:
  1. Ch'ng LS, Lee WS, Kirkwood CD
    Emerg Infect Dis, 2011 May;17(5):948-50.
    PMID: 21529427 DOI: 10.3201/eid1705.101652
    Matched MeSH terms: RNA, Viral/genetics
  2. Gaudino M, Aurine N, Dumont C, Fouret J, Ferren M, Mathieu C, et al.
    Emerg Infect Dis, 2020 01;26(1):104-113.
    PMID: 31855143 DOI: 10.3201/eid2601.191284
    We conducted an in-depth characterization of the Nipah virus (NiV) isolate previously obtained from a Pteropus lylei bat in Cambodia in 2003 (CSUR381). We performed full-genome sequencing and phylogenetic analyses and confirmed CSUR381 is part of the NiV-Malaysia genotype. In vitro studies revealed similar cell permissiveness and replication of CSUR381 (compared with 2 other NiV isolates) in both bat and human cell lines. Sequence alignments indicated conservation of the ephrin-B2 and ephrin-B3 receptor binding sites, the glycosylation site on the G attachment protein, as well as the editing site in phosphoprotein, suggesting production of nonstructural proteins V and W, known to counteract the host innate immunity. In the hamster animal model, CSUR381 induced lethal infections. Altogether, these data suggest that the Cambodia bat-derived NiV isolate has high pathogenic potential and, thus, provide insight for further studies and better risk assessment for future NiV outbreaks in Southeast Asia.
    Matched MeSH terms: RNA, Viral/genetics
  3. Gonçalves-Carneiro D, Mastrocola E, Lei X, DaSilva J, Chan YF, Bieniasz PD
    Nat Microbiol, 2022 Oct;7(10):1558-1567.
    PMID: 36075961 DOI: 10.1038/s41564-022-01223-8
    Attenuation of a virulent virus is a proven approach for generating vaccines but can be unpredictable. For example, synonymous recoding of viral genomes can attenuate replication but sometimes results in pleiotropic effects that confound rational vaccine design. To enable specific, conditional attenuation of viruses, we examined target RNA features that enable zinc finger antiviral protein (ZAP) function. ZAP recognized CpG dinucleotides and targeted CpG-rich RNAs for depletion, but RNA features such as CpG numbers, spacing and surrounding nucleotide composition that enable specific modulation by ZAP were undefined. Using synonymously mutated HIV-1 genomes, we defined several sequence features that govern ZAP sensitivity and enable stable attenuation. We applied rules derived from experiments with HIV-1 to engineer a mutant enterovirus A71 genome whose attenuation was stable and strictly ZAP-dependent, both in cell culture and in mice. The conditionally attenuated enterovirus A71 mutant elicited neutralizing antibodies that were protective against wild-type enterovirus A71 infection and disease in mice. ZAP sensitivity can thus be readily applied for the rational design of conditionally attenuated viral vaccines.
    Matched MeSH terms: RNA, Viral/genetics
  4. Lai MY, Tang SN, Lau YL
    Am J Trop Med Hyg, 2021 Jun 15;105(2):375-377.
    PMID: 34129521 DOI: 10.4269/ajtmh.21-0150
    Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading rapidly all over the world. In the absence of effective treatments or a vaccine, there is an urgent need to develop a more rapid and simple detection technology of COVID-19. We describe a WarmStart colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2. The detection limit for this assay was 1 copy/µL SARS-CoV-2. To test the clinical sensitivity and specificity of the assay, 37 positive and 20 negative samples were used. The WarmStart colorimetric RT-LAMP had 100% sensitivity and specificity. End products were detected by direct observation, thereby eliminating the need for post-amplification processing steps. WarmStart colorimetric RT-LAMP provides an opportunity to facilitate virus detection in resource-limited settings without a sophisticated diagnostic infrastructure.
    Matched MeSH terms: RNA, Viral/genetics
  5. Lau YL, Ismail IB, Izati Binti Mustapa N, Lai MY, Tuan Soh TS, Hassan AH, et al.
    Am J Trop Med Hyg, 2020 Dec;103(6):2350-2352.
    PMID: 33098286 DOI: 10.4269/ajtmh.20-1079
    A simple and rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of SARS-CoV-2. The RT-LAMP assay was highly specific for SARS-CoV-2 and was able to detect one copy of transcribed SARS-CoV-2 RNA within 24 minutes. Assay validation performed using 50 positive and 32 negative clinical samples showed 100% sensitivity and specificity. The RT-LAMP would be valuable for clinical diagnosis and epidemiological surveillance of SARS-CoV-2 infection in resource-limited areas as it does not require the use of sophisticated and costly equipment.
    Matched MeSH terms: RNA, Viral/genetics*
  6. Pyke AT, Williams DT, Nisbet DJ, van den Hurk AF, Taylor CT, Johansen CA, et al.
    Am J Trop Med Hyg, 2001 Dec;65(6):747-53.
    PMID: 11791969
    In mid-January 2000, the reappearance of Japanese encephalitis (JE) virus activity in the Australasian region was first demonstrated by the isolation of JE virus from 3 sentinel pigs on Badu Island in the Torres Strait. Further evidence of JE virus activity was revealed through the isolation of JE virus from Culex gelidus mosquitoes collected on Badu Island and the detection of specific JE virus neutralizing antibodies in 3 pigs from Saint Pauls community on Moa Island. Nucleotide sequencing and phylogenetic analyses of the premembrane and envelope genes were performed which showed that both the pig and mosquito JE virus isolates (TS00 and TS4152, respectively) clustered in genotype I, along with northern Thai, Cambodian, and Korean isolates. All previous Australasian JE virus isolates belong to genotype II, along with Malaysian and Indonesian isolates. Therefore, for the first time, the appearance and transmission of a second genotype of JE virus in the Australasian region has been demonstrated.
    Matched MeSH terms: RNA, Viral/genetics
  7. Wong HV, Vythilingam I, Sulaiman WY, Lulla A, Merits A, Chan YF, et al.
    Am J Trop Med Hyg, 2016 Jan;94(1):182-6.
    PMID: 26598564 DOI: 10.4269/ajtmh.15-0318
    Vertical transmission may contribute to the maintenance of arthropod-borne viruses, but its existence in chikungunya virus (CHIKV) is unclear. Experimental vertical transmission of infectious clones of CHIKV in Aedes aegypti mosquitoes from Malaysia was investigated. Eggs and adult progeny from the second gonotrophic cycles of infected parental mosquitoes were tested. Using polymerase chain reaction (PCR), 56.3% of pooled eggs and 10% of adult progeny had detectable CHIKV RNA, but no samples had detectable infectious virus by plaque assay. Transfected CHIKV RNA from PCR-positive eggs did not yield infectious virus in BHK-21 cells. Thus, vertical transmission of viable CHIKV was not demonstrated. Noninfectious CHIKV RNA persists in eggs and progeny of infected Ae. aegypti, but the mechanism and significance are unknown. There is insufficient evidence to conclude that vertical transmission exists in CHIKV, as positive results reported in previous studies were almost exclusively based only on viral RNA detection.
    Matched MeSH terms: RNA, Viral/genetics*
  8. Rohani A, Aidil Azahary AR, Malinda M, Zurainee MN, Rozilawati H, Wan Najdah WM, et al.
    J Vector Borne Dis, 2014 Dec;51(4):327-32.
    PMID: 25540966
    BACKGROUND & OBJECTIVESI: Transovarial transmission of dengue virus in the Aedes vectors is now a well-documented phenomenon reported from many parts of the endemic areas in the world, which played an important role in initiating and maintaining the outbreak in human populations. This study investigated the factors affecting breeding habitats and the relationship with transovarial dengue virus in larvae of Aedes aegypti and Ae. albopictus.
    Matched MeSH terms: RNA, Viral/genetics
  9. Gao X, Liu H, Wang H, Fu S, Guo Z, Liang G
    PLoS Negl Trop Dis, 2013;7(9):e2459.
    PMID: 24069502 DOI: 10.1371/journal.pntd.0002459
    Although a previous study predicted that Japanese encephalitis virus (JEV) originated in the Malaysia/Indonesia region, the virus is known to circulate mainly on the Asian continent. However, there are no reported systematic studies that adequately define how JEV then dispersed throughout Asia.
    Matched MeSH terms: RNA, Viral/genetics
  10. Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, et al.
    PLoS Negl Trop Dis, 2012;6(2):e1477.
    PMID: 22389730 DOI: 10.1371/journal.pntd.0001477
    Zika virus (ZIKV) is a mosquito-borne flavivirus distributed throughout much of Africa and Asia. Infection with the virus may cause acute febrile illness that clinically resembles dengue fever. A recent study indicated the existence of three geographically distinct viral lineages; however this analysis utilized only a single viral gene. Although ZIKV has been known to circulate in both Africa and Asia since at least the 1950s, little is known about the genetic relationships between geographically distinct virus strains. Moreover, the geographic origin of the strains responsible for the epidemic that occurred on Yap Island, Federated States of Micronesia in 2007, and a 2010 pediatric case in Cambodia, has not been determined.
    Matched MeSH terms: RNA, Viral/genetics
  11. Saedi TA, Moeini H, Tan WS, Yusoff K, Daud HM, Chu KB, et al.
    Mol Biol Rep, 2012 May;39(5):5785-90.
    PMID: 22223294 DOI: 10.1007/s11033-011-1389-7
    White tail disease (WTD) is a serious viral disease in the hatcheries and nursery ponds of Macrobrachium rosenbergii in many parts of the world. A new disease similar to WTD was observed in larvae and post larvae of M. rosenbergii cultured in Malaysia. In the present study, RT-PCR assay was used to detect the causative agents of WTD, M. rosenbergii nodavirus (MrNV) and extra small virus (XSV) using specific primers for MrNV RNA2 and XSV. The results showed the presence of MrNV in the samples with or without signs of WTD. However, XSV was only detected in some of the MrNV-positive samples. Phylogenetic analysis showed that the RNA2 of our Malaysian isolates were significantly different from the other isolates. Histopathological studies revealed myofiber degeneration of the tail muscles and liquefactive myopathy in the infected prawns. This was the first report on the occurrence of MrNV in the Malaysian freshwater prawn.
    Matched MeSH terms: RNA, Viral/genetics
  12. Schuh AJ, Tesh RB, Barrett AD
    J Gen Virol, 2011 Mar;92(Pt 3):516-27.
    PMID: 21123550 DOI: 10.1099/vir.0.027110-0
    Japanese encephalitis virus (JEV), the prototype member of the JEV serocomplex, genus Flavivirus, family Flaviviridae, is the most significant arthropod-borne encephalitis worldwide in terms of morbidity and mortality. At least four genotypes (GI-GIV) of the virus have been identified; however, to date, the genomic nucleotide sequence of only one GII virus has been determined (FU strain, Australia, 1995). This study sequenced three additional GII strains of JEV isolated between 1951 and 1978 in Korea, Malaysia and Indonesia, respectively, and compared them with the FU strain, as well as with virus strains representing the other three genotypes. Based on nucleotide and amino acid composition, the genotype II strains were the most similar to GI strains; however, these two genotypes are epidemiologically distinct. Selection analyses revealed that the strains utilized in this study are under predominantly purifying selection, and evidence of positive selection was detected at aa 24 of the NS4B protein, a protein that functions as an alpha/beta interferon signalling inhibitor.
    Matched MeSH terms: RNA, Viral/genetics*
  13. Jiang J, Ridley AW, Tang H, Croft BJ, Johnson KN
    Arch Virol, 2008;153(5):839-48.
    PMID: 18299794 DOI: 10.1007/s00705-008-0058-1
    Fiji leaf gall is an important disease of sugarcane in Australia and other Asia-Pacific countries. The causative agent is the reovirus Fiji disease virus (FDV). Previous reports indicate that there is variation in pathology between virus isolates. To investigate the amount of genetic variation found in FDV, 25 field isolates from Australia, Papua New Guinea and Malaysia were analysed by partial sequencing of genome segments S3 and S9. There was up to 15% divergence in the nucleotide sequence among the 25 isolates. A similar amount of divergence and pattern of relationships was found for each of the two genomic segments for most of the field isolates, although reassortment of genome segments seems likely for at least one of the Papua New Guinean isolates. The finding of a high level of variation in FDV isolated in different regions has implications for quarantine and disease management.
    Matched MeSH terms: RNA, Viral/genetics
  14. Tee KK, Pon CK, Kamarulzaman A, Ng KP
    AIDS, 2005 Jan 28;19(2):119-26.
    PMID: 15668536
    OBJECTIVES: To investigate the molecular epidemiology of HIV-1 and to screen for the emergence of intersubtype recombinants in Kuala Lumpur, Malaysia.

    DESIGN: A molecular epidemiology study was conducted among HIV-1 seropositive patients attending the University Malaya Medical Center (UMMC) from July 2003 to June 2004.

    METHODS: Protease (PR) and reverse transcriptase (RT) gene sequences were derived from drug resistance genotyping assay of 100 newly diagnosed or antiretroviral-naive patients. These were phylogenetically analysed to determine the subtypes and recombination breakpoint analyses were performed on intersubtype recombinants to estimate the recombination breakpoint(s).

    RESULTS: CRF01_AE predominated in Kuala Lumpur with 65% in both PR and RT genes. B subtype was detected at 14% and 12% in PR and RT genes, respectively. C subtype was present at 1% in both genes. Overall, the concordance of PR and RT genes in discriminating subtypes/circulating recombinant forms (CRF) was high at 96%. In this study, novel CRF01_AE/B intersubtype recombinants were detected at high prevalence (22%), including those isolates with subtype discordance. Thai variants of CRF01_AE and B subtype were involved in the genesis of these unique recombinant forms (URF). Interestingly, 19 CRF01_AE/B intersubtype recombinant isolates shared similar recombination breakpoints in both PR and RT genes. Several distinct URF were also identified.

    CONCLUSION: PR and RT genes can be utilized for subtype/CRF assessment with high degree of agreement, allowing concurrent surveillance of circulating HIV-1 subtypes with antiretroviral drug resistance genotyping tests. The emergence of highly identical CRF01_AE/B intersubtype recombinants suggests the possibility of the appearance of a new circulating recombinant form in Kuala Lumpur.

    Matched MeSH terms: RNA, Viral/genetics
  15. Murulitharan K, Yusoff K, Omar AR, Molouki A
    Virus Genes, 2013 Jun;46(3):431-40.
    PMID: 23306943 DOI: 10.1007/s11262-012-0874-y
    Newcastle disease virus (NDV) strain AF2240 is a viscerotropic velogenic strain that is used as a vaccine challenge virus in Malaysia. The identification of the full length genome will be a crucial platform for further studies of this isolate. In this study, we fully sequenced the genome of a derivative of this strain named AF2240-I. The 15,192 nt long genome contains a 55-nt leader sequence at the 3' whereas the trailer region consists of 114 nt at the 5'. The intergenic sequences between the NP-P, P-M, M-F, F-HN, and HN-L genes comprise 1, 1, 1, 31, and 47 nt, respectively. The acknowledged cleavage site of fusion protein showed amino acid sequence of 112-R-R-Q-K-R-F-117, which corresponds to those of virulent NDV strains. Phylogenetic analysis of the whole virus genome shows that the strain AF2240-I belongs to genotype VIII and is more closely related to velogenic strains QH1, QH4, Fontana, Largo, and Italienas compared to other strains of NDV. Differences are noticed in the hemagglutinin-neuraminidase (HN) and matrix (M) gene between AF2240 and its derivative AF2240-I. This is the first report of a complete genome sequence of an NDV strain isolated in Malaysia.
    Matched MeSH terms: RNA, Viral/genetics*
  16. Abba Y, Hassim H, Hamzah H, Ibrahim OE, Ilyasu Y, Bande F, et al.
    Virus Genes, 2016 Oct;52(5):640-50.
    PMID: 27142080 DOI: 10.1007/s11262-016-1345-7
    Boid inclusion body disease (BIBD) is a viral disease of boids caused by reptarenavirus. In this study, tissue from naturally infected boid snakes were homogenized and propagated in African Monkey kidney (Vero) and rat embryonic fibroblast (REF) cells. Virus replication was determined by the presence of cytopathic effect, while viral morphology was observed using transmission electron microscopy. Viral RNA was amplified using RT-PCR with primers specific for the L-segment of reptarenavirus; similarly, quantification of viral replication was done using qPCR at 24-144 h postinfection. Viral cytopathology was characterized by cell rounding and detachment in both Vero and REF cells. The viral morphology showed round-to-pleomorphic particles ranging from 105 to 150 nm which had sand-like granules. Sanger sequencing identified four closely associated reptarenavirus species from 15 (37.5 %) of the total samples tested, and these were named as follows: reptarenavirus UPM-MY 01, 02, 03, and 04. These isolates were phylogenetically closely related to the University Helsinki virus (UHV), Boa Arenavirus NL (ROUTV; BAV), and unidentified reptarenavirus L20 (URAV-L20). Comparison of deduced amino acid sequences further confirmed identities to L-protein of UHV, L-polymerase of BAV and RNA-dependent RNA polymerase of URAV-L20. Viral replication in Vero cells increased steadily from 24 to 72 h and peaked at 144 h. This is the first study in South East Asia to isolate and characterize reptarenavirus in boid snakes with BIBD.
    Matched MeSH terms: RNA, Viral/genetics
  17. Ong ST, Tan WS, Hassan SS, Mohd Lila MA, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Oct;6(5):347-50.
    PMID: 12385971
    The coding region of the nucleocapsid (N) gene was amplified from the viral RNA and inserted into the bacterial expression vector, pTrcHis2, for intracellular expression in three Escherichia coli strains: TOP 10, BL 21 and SG 935. The N protein was expressed as a fusion protein containing the myc epitope and His-tag at its C-terminal end. The amount of the fusion protein expressed in strain SG 935 was significantly higher than the other two strains, and was detected by the anti-myc antibody, anti-His and swine anti-NiV serum. Hence, the N(fus) protein produced in E. coli could serve as an alternative antigen for the detection of anti-NiV in swine.
    Matched MeSH terms: RNA, Viral/genetics
  18. Blok J, Kay BH, Hall RA, Gorman BM
    Arch Virol, 1988;100(3-4):213-20.
    PMID: 2840873
    Thirteen strains of dengue type 1 were isolated from the lymphocyte fractions of 69 acute phase blood samples collected at Thursday Island Hospital during 1981 and 1982. One further strain of type 1 was isolated from 7 blood samples despatched by air from Cairns Base Hospital during 1982. Four of these Australian isolates representing the beginning, middle, and end of the epidemic were examined by restriction enzyme mapping and were found to be identical for the nine restriction enzymes used. The maps differed from those derived from two Malaysian dengue type 1 strains isolated during the epidemic of 1981-82 in that country. This suggests reliance on serological typing to establish global circulation patterns of epidemic dengue is insufficient and that more specific methods such as genome mapping are useful.
    Matched MeSH terms: RNA, Viral/genetics
  19. Molouki A, Mehrabadi MHF, Bashashati M, Akhijahani MM, Lim SHE, Hajloo SA
    Trop Anim Health Prod, 2019 Jun;51(5):1247-1252.
    PMID: 30689157 DOI: 10.1007/s11250-019-01817-1
    BACKGROUND: Based on our previous work, it was discovered that some Newcastle disease virus (NDV) isolates from backyard poultry between 2011 and 2013 in Iran formed a new separate cluster when phylogenetic analysis based on the complete F gene sequence was carried out. The novel cluster was designated subgenotype VII(L) and published.

    AIM: In the current study, for further validation, we initiated a comprehensive epidemiological study to identify the dominant NDV genotype(s) circulating within the country. Collection of samples was executed between October 2017 and February 2018 from 108 commercial broiler farms which reported clinical signs of respiratory disease in their broilers.

    RESULT: We report that 38 of the farms (> 35%) tested positive for NDV. The complete F gene sequences of seven of the isolates are shown as representative sequences in this study. According to the phylogenetic tree constructed, the recent broiler farm isolates clustered into the newly designated cluster VII(L) together with the older Iranian backyard poultry isolates in our previous work. All the sequences shared the same virulence-associated F cleavage site of 112RRQKR↓F117.

    CONCLUSION: Our phylogenetic analysis suggested that the NDV subgenotype VII(L) may have been derived from subgenotype VIId, and contrary to popular belief, subgenotype VIId may not be the dominant subgenotype in Iran. Tracking of the subgenotype on BLAST suggested that the NDV subgenotype VII(L), although previously unidentified, may have been circulating in this region as an endemic virus for at least a decade. Other NDV genotypes, however, have also been reported in Iran in recent years. Hence, ongoing study is aimed at determining the exact dominant NDV genotypes and subgenotypes in the country. This will be crucial in effective mitigation of outbreaks in Iranian broiler farms.

    Matched MeSH terms: RNA, Viral/genetics
  20. Goldsmith CS, Whistler T, Rollin PE, Ksiazek TG, Rota PA, Bellini WJ, et al.
    Virus Res, 2003 Mar;92(1):89-98.
    PMID: 12606080
    Nipah virus, which was first recognized during an outbreak of encephalitis with high mortality in Peninsular Malaysia during 1998-1999, is most closely related to Hendra virus, another emergent paramyxovirus first recognized in Australia in 1994. We have studied the morphologic features of Nipah virus in infected Vero E6 cells and human brain by using standard and immunogold electron microscopy and ultrastructural in situ hybridization. Nipah virions are enveloped particles composed of a tangle of filamentous nucleocapsids and measured as large as 1900 nm in diameter. The nucleocapsids measured up to 1.67 microm in length and had the herringbone structure characteristic for paramyxoviruses. Cellular infection was associated with multinucleation, intracytoplasmic nucleocapsid inclusions (NCIs), and long cytoplasmic tubules. Previously undescribed for other members of the family Paramyxoviridae, infected cells also contained an inclusion formed of reticular structures. Ultrastructural ISH studies suggest these inclusions play an important role in the transcription process.
    Matched MeSH terms: RNA, Viral/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links