Displaying publications 41 - 60 of 97 in total

Abstract:
Sort:
  1. Gustafsson M, Gustafsson L, Alloysius D, Falck J, Yap S, Karlsson A, et al.
    Data Brief, 2016 Mar;6:466-70.
    PMID: 26900591 DOI: 10.1016/j.dib.2015.12.048
    The data presented in this paper is supporting the research article "Life history traits predict the response to increased light among 33 tropical rainforest tree species" [3]. We show basic growth and survival data collected over the 6 years duration of the experiment, as well as data from traits inventories covering 12 tree traits collected prior to and after a canopy reduction treatment in 2013. Further, we also include canopy closure and forest light environment data from measurements with hemispherical photographs before and after the treatment.
    Matched MeSH terms: Rainforest
  2. Kondo T, Nishimura S, Tani N, Ng KK, Lee SL, Muhammad N, et al.
    Am J Bot, 2016 Nov;103(11):1912-1920.
    PMID: 27797714
    PREMISE OF THE STUDY: In tropical rainforests of Southeast Asia, a highly fecund thrips (Thrips spp.) responds rapidly to the mass flowering at multiple-year intervals characteristic of certain species such as the canopy tree studied here, Shorea acuminata, by feeding on flower resources. However, past DNA analyses of pollen adherent to thrips bodies revealed that the thrips promoted a very high level of self-pollination. Here, we identified the pollinator that contributes to cross-pollination and discuss ways that the pollination system has adapted to mass flowering.

    METHODS: By comparing the patterns of floral visitation and levels of genetic diversity in adherent pollen loads among floral visitors, we evaluated the contribution of each flower visitor to pollination.

    KEY RESULTS: The big-eyed bug, Geocoris sp., a major thrips predator, was an inadvertent pollinator, and importantly contributed to cross-pollination. The total outcross pollen adhering to thrips was approximately 30% that on the big-eyed bugs. Similarly, 63% of alleles examined in S. acuminata seeds and seedlings occurred in pollen adhering to big-eyed bugs; about 30% was shared with pollen from thrips.

    CONCLUSIONS: During mass flowering, big-eyed bugs likely travel among flowering S. acuminata trees, attracted by the abundant thrips. Floral visitation patterns of big-eyed bugs vs. other insects suggest that these bugs can maintain their population size between flowering by preying upon another thrips (Haplothrips sp.) that inhabits stipules of S. acuminata throughout the year and quickly respond to mass flowering. Thus, thrips and big-eyed bugs are essential components in the pollination of S. acuminata.

    Matched MeSH terms: Rainforest
  3. Nakabayashi M, Inoue Y, Ahmad AH, Izawa M
    PLoS One, 2019;14(6):e0217590.
    PMID: 31194749 DOI: 10.1371/journal.pone.0217590
    Ficus species are keystone plants in tropical rainforests, and hemi-epiphytic figs play a notably important role in forest ecosystems. Because hemi-epiphytic figs have strict germination requirements, germination and establishment stages regulate their populations. Despite the ecological importance of hemi-epiphytic figs in the rainforests, seed dispersal systems by fig-eating animals under natural conditions remain unknown because of the difficulty in tracing the destiny of dispersed seeds in the canopy. Therefore, seed dispersal effectiveness (SDE) has never been evaluated for hemi-epiphytic figs. We evaluated the SDE of hemi-epiphytic figs using qualitative and quantitative components by three relatively large-sized (> 3 kg) arboreal and volant animals in Bornean rainforests that largely depend on fig fruits in their diets: binturongs Arctictis binturong, Mueller's gibbons Hylobates muelleri, and helmeted hornbills Rhinoplax vigil. The SDE values of binturongs was by far the highest among the three study animals. Meanwhile, successful seed dispersal of hemi-epiphytic figs by gibbons and helmeted hornbills is aleatory and rare. Given that seed deposition determines the fate of hemi-epiphytic figs, the defecatory habits of binturongs, depositing feces on specific microsites in the canopy, is the most reliable dispersal method, compared to scattering feces from the air or upper canopy. We showed that reliable directed dispersal of hemi-epiphytic figs occurs in high and uneven canopy of Bornean rainforests. This type of dispersal is limited to specific animal species, and therefore it may become one of the main factors regulating low-success hemi-epiphytic fig recruitment in Bornean rainforests.
    Matched MeSH terms: Rainforest
  4. Kamakura M, Kosugi Y, Takanashi S, Uemura A, Utsugi H, Kassim AR
    Tree Physiol, 2015 Jan;35(1):61-70.
    PMID: 25595752 DOI: 10.1093/treephys/tpu109
    In this study, we demonstrated the occurrence of stomatal patchiness and its spatial scale in leaves from various sizes of trees grown in a lowland dipterocarp forest in Peninsular Malaysia. To evaluate the patterns of stomatal behavior, we used three techniques simultaneously to analyze heterobaric or homobaric leaves from five tree species ranging from 0.6 to 31 m in height: (i) diurnal changes in chlorophyll fluorescence imaging, (ii) observation and simulation of leaf gas-exchange rates and (iii) a pressure-infiltration method. Measurements were performed in situ with 1000 or 500 μmol m(-2) s(-1) photosynthetic photon flux density. Diurnal patterns in the spatial distribution of photosynthetic electron transport rate (J) mapped from chlorophyll fluorescence images, a comparison of observed and simulated leaf gas-exchange rates, and the spatial distribution of stomatal apertures obtained from the acid-fuchsin-infiltrated area showed that patchy stomatal closure coupled with severe midday depression of photosynthesis occurred in Neobalanocarpus heimii (King) Ashton, a higher canopy tree with heterobaric leaves due to the higher leaf temperature and vapor pressure deficit. However, subcanopy or understory trees showed uniform stomatal behavior throughout the day, although they also have heterobaric leaves. These results suggest that the occurrence of stomatal patchiness is determined by tree size and/or environmental conditions. The analysis of spatial scale by chlorophyll fluorescence imaging showed that several adjacent anatomical patches (lamina areas bounded by bundle-sheath extensions within the lamina) may co-operate for the distributed patterns of J and stomatal apertures.
    Matched MeSH terms: Rainforest*
  5. Ichie T, Inoue Y, Takahashi N, Kamiya K, Kenzo T
    J Plant Res, 2016 Jul;129(4):625-635.
    PMID: 26879931 DOI: 10.1007/s10265-016-0795-2
    The vertical structure of a tropical rain forest is complex and multilayered, with strong variation of micro-environment with height up to the canopy. We investigated the relation between morphological traits of leaf surfaces and tree ecological characteristics in a Malaysian tropical rain forest. The shapes and densities of stomata and trichomes on the abaxial leaf surfaces and their relation with leaf characteristics such as leaf area and leaf mass per area (LMA) were studied in 136 tree species in 35 families with different growth forms in the tropical moist forest. Leaf physiological properties were also measured in 50 canopy and emergent species. Most tree species had flat type (40.4 %) or mound type (39.7 %) stomata. In addition, 84 species (61.76 %) in 22 families had trichomes, including those with glandular (17.65 %) and non-glandular trichomes (44.11 %). Most leaf characteristics significantly varied among the growth form types: species in canopy and emergent layers and canopy gap conditions had higher stomatal density, stomatal pore index (SPI), trichome density and LMA than species in understory and subcanopy layers, though the relation of phylogenetically independent contrasts to each characteristic was not statistically significant, except for leaf stomatal density, SPI and LMA. Intrinsic water use efficiency in canopy and emergent tree species with higher trichome densities was greater than in species with lower trichome densities. These results suggest that tree species in tropical rain forests adapt to a spatial difference in their growth forms, which are considerably affected by phylogenetic context, by having different stomatal and trichome shapes and/or densities.
    Matched MeSH terms: Rainforest*
  6. Smith JR, Ghazoul J, Burslem DFRP, Itoh A, Khoo E, Lee SL, et al.
    PLoS One, 2018;13(3):e0193501.
    PMID: 29547644 DOI: 10.1371/journal.pone.0193501
    Documenting the scale and intensity of fine-scale spatial genetic structure (FSGS), and the processes that shape it, is relevant to the sustainable management of genetic resources in timber tree species, particularly where logging or fragmentation might disrupt gene flow. In this study we assessed patterns of FSGS in three species of Dipterocarpaceae (Parashorea tomentella, Shorea leprosula and Shorea parvifolia) across four different tropical rain forests in Malaysia using nuclear microsatellite markers. Topographic heterogeneity varied across the sites. We hypothesised that forests with high topographic heterogeneity would display increased FSGS among the adult populations driven by habitat associations. This hypothesis was not supported for S. leprosula and S. parvifolia which displayed little variation in the intensity and scale of FSGS between sites despite substantial variation in topographic heterogeneity. Conversely, the intensity of FSGS for P. tomentella was greater at a more topographically heterogeneous than a homogeneous site, and a significant difference in the overall pattern of FSGS was detected between sites for this species. These results suggest that local patterns of FSGS may in some species be shaped by habitat heterogeneity in addition to limited gene flow by pollen and seed dispersal. Site factors can therefore contribute to the development of FSGS. Confirming consistency in species' FSGS amongst sites is an important step in managing timber tree genetic diversity as it provides confidence that species specific management recommendations based on species reproductive traits can be applied across a species' range. Forest managers should take into account the interaction between reproductive traits and site characteristics, its consequences for maintaining forest genetic resources and how this might influence natural regeneration across species if management is to be sustainable.
    Matched MeSH terms: Rainforest
  7. Ng CH, Lee SL, Tnah LH, Ng KKS, Lee CT, Diway B, et al.
    J Hered, 2019 12 17;110(7):844-856.
    PMID: 31554011 DOI: 10.1093/jhered/esz052
    Southeast Asian rainforests at upper hill elevations are increasingly vulnerable to degradation because most lowland forest areas have been converted to different land uses. As such, understanding the genetics of upper hill species is becoming more crucial for their future management and conservation. Shorea platyclados is an important, widespread upper hill dipterocarp in Malaysia. To elucidate the genetic structure of S. platyclados and ultimately provide guidelines for a conservation strategy for this species, we carried out a comprehensive study of the genetic diversity and demographic history of S. platyclados. Twenty-seven populations of S. platyclados across its range in Malaysia were genotyped at 15 polymorphic microsatellite loci and sequenced at seven noncoding chloroplast DNA (cpDNA) regions. A total of 303 alleles were derived from the microsatellite loci, and 29 haplotypes were identified based on 2892 bp of concatenated cpDNA sequences. The populations showed moderately high genetic diversity (mean HE = 0.680 for microsatellite gene diversity and HT = 0.650 for total haplotype diversity) and low genetic differentiation (FST = 0.060). Bayesian clustering divided the studied populations into two groups corresponding to western and eastern Malaysia. Bottleneck analysis did not detect any recent bottleneck events. Extended Bayesian skyline analyses showed a model of constant size for the past population history of this species. Based on our findings, priority areas for in situ and ex situ conservation and a minimum population size are recommended for the sustainable utilization of S. platyclados.
    Matched MeSH terms: Rainforest
  8. Senawi J, Kingston T
    J Exp Biol, 2019 12 03;222(Pt 23).
    PMID: 31704901 DOI: 10.1242/jeb.203950
    Differences in wing morphology are predicted to reflect differences in bat foraging strategies. Experimental tests of this prediction typically assess the relationship between wing morphology and a measures of flight performance on an obstacle course. However, studies have lacked measures of obstacle avoidance ability true scores, which may confound interpretation of ability across the range of presented tasks. Here, we used Rasch analysis of performance in a collision-avoidance experiment to estimate the ability of bat species to fly through vegetative clutter. We refer to this latent trait as 'clutter negotiating ability' and determined the relationships between clutter negotiating ability and wing morphology in 15 forest insectivorous bat species that forage in the densely cluttered rainforests of Malaysia. The clutter negotiating ability scores were quantified based on individual responses of each species to 11 different obstacle arrangements (four banks of vertical strings 10-60 cm apart). The tasks employed for the collision-avoidance experiment were reliable and valid, although Rasch analysis suggested that the experiment was too easy to discriminate completely among the 15 species. We found significant negative correlations between clutter negotiating ability and body mass, wingspan, wing loading and wing area but a positive significant correlation with wingtip area ratio. However, in stepwise multiple regression analyses, only body mass and wing loading were significant predictors of clutter negotiating ability. Species fell into clusters of different clutter negotiating ability, suggesting a potential mechanism for resource partitioning within the forest interior insectivorous ensemble.
    Matched MeSH terms: Rainforest*
  9. Venkataraman VV, Yegian AK, Wallace IJ, Holowka NB, Tacey I, Gurven M, et al.
    Proc Biol Sci, 2018 11 07;285(1890).
    PMID: 30404871 DOI: 10.1098/rspb.2018.1492
    The convergent evolution of the human pygmy phenotype in tropical rainforests is widely assumed to reflect adaptation in response to the distinct ecological challenges of this habitat (e.g. high levels of heat and humidity, high pathogen load, low food availability, and dense forest structure), yet few precise adaptive benefits of this phenotype have been proposed. Here, we describe and test a biomechanical model of how the rainforest environment can alter gait kinematics such that short stature is advantageous in dense habitats. We hypothesized that environmental constraints on step length in rainforests alter walking mechanics such that taller individuals are expected to walk more slowly due to their inability to achieve preferred step lengths in the rainforest. We tested predictions from this model with experimental field data from two short-statured populations that regularly forage in the rainforest: the Batek of Peninsular Malaysia and the Tsimane of the Bolivian Amazon. In accordance with model expectations, we found stature-dependent constraints on step length in the rainforest and concomitant reductions in walking speed that are expected to compromise foraging efficiency. These results provide the first evidence that the human pygmy phenotype is beneficial in terms of locomotor performance and highlight the value of applying laboratory-derived biomechanical models to field settings for testing evolutionary hypotheses.
    Matched MeSH terms: Rainforest*
  10. Majid A, Kruspe N
    Curr Biol, 2018 02 05;28(3):409-413.e2.
    PMID: 29358070 DOI: 10.1016/j.cub.2017.12.014
    People struggle to name odors [1-4]. This has been attributed to a diminution of olfaction in trade-off to vision [5-10]. This presumption has been challenged recently by data from the hunter-gatherer Jahai who, unlike English speakers, find odors as easy to name as colors [4]. Is the superior olfactory performance among the Jahai because of their ecology (tropical rainforest), their language family (Aslian), or because of their subsistence (they are hunter-gatherers)? We provide novel evidence from the hunter-gatherer Semaq Beri and the non-hunter-gatherer (swidden-horticulturalist) Semelai that subsistence is the critical factor. Semaq Beri and Semelai speakers-who speak closely related languages and live in the tropical rainforest of the Malay Peninsula-took part in a controlled odor- and color-naming experiment. The swidden-horticulturalist Semelai found odors much more difficult to name than colors, replicating the typical Western finding. But for the hunter-gatherer Semaq Beri odor naming was as easy as color naming, suggesting that hunter-gatherer olfactory cognition is special.
    Matched MeSH terms: Rainforest
  11. Cannon CH, Peart DR, Leighton M
    Science, 1998 Aug 28;281(5381):1366-8.
    PMID: 9721105
    The effects of commercial logging on tree diversity in tropical rainforest are largely unknown. In this study, selectively logged tropical rainforest in Indonesian Borneo is shown to contain high tree species richness, despite severe structural damage. Plots logged 8 years before sampling contained fewer species of trees greater than 20 centimeters in diameter than did similar-sized unlogged plots. However, in samples of the same numbers of trees (requiring a 50 percent larger area), logged forest contained as many tree species as unlogged forest. These findings warrant reassessment of the conservation potential of large tracts of commercially logged tropical rainforest.
    Matched MeSH terms: Rainforest
  12. Kiew R, Lim CL
    PhytoKeys, 2019;131:1-26.
    PMID: 31537960 DOI: 10.3897/phytokeys.131.35944
    Of the 92 Codonoboea species that occur in Peninsular Malaysia, 20 are recorded from the state of Terengganu, of which 9 are endemic to Terengganu including three new species, C. norakhirrudiniana Kiew, C. rheophytica Kiew and C. sallehuddiniana C.L.Lim, that are here described and illustrated. A key and checklist to all the Terengganu species are provided. The majority of species grow in lowland rain forest, amongst which C. densifolia and C. rheophytica are rheophytic. Only four grow in montane forest. The flora of Terengganu is still incompletely known, especially in the northern part of the state and in mountainous areas and so, with botanical exploration, more new species can be expected in this speciose genus.
    Matched MeSH terms: Rainforest
  13. Lye TP
    Hum Biol, 2013 Feb-Jun;85(1-3):417-44.
    PMID: 24297236 DOI: 10.3378/027.085.0320
    The so-called negritos adapt not just to a tropical forest environment but also to an environment characterized by perturbations and fluctuations. As with other hunter-gatherers in the region and, indeed, throughout the world, they use both social and ecological methods to enhance their chances of survival in this changing environment: socially, they have developed networks of trading and marriage partners; ecologically, they maintain patches of key resources that are available for future harvesting. As evidenced in the case of the Batek (Orang Asli), patterns of forest structure and composition are sometimes direct outcomes of intentional resource concentration and enrichment strategies. While little of the above is controversial anthropologically, what has drawn some debate is the nature of the relationship with partner societies. Conventional wisdom posits relations of inequality between foragers and "others": foragers and farmers are often construed as hierarchical dyads where foragers supply products or labor to farmers in exchange for agricultural harvests and other trade goods. This kind of adaptation appears to be one of divergent specialization. However, there are cases, such as in the relationship between Batek and Semaq Beri, where both societies follow a roughly similar mode of adaptation, and specialization has not materialized. In sum, while not denying that hierarchy and inequality exist, I suggest that they have to be contextualized within a larger strand of relationships that includes both hierarchy and egality. Further, such relationships are part of the general portfolio of risk reduction strategies, following which access to widely scattered environmental resources, and passage from one location to another, is enhanced not by competing with and displacing neighbors but by maintaining a flexible regime of friendly exchange partners.
    Matched MeSH terms: Rainforest*
  14. Huaraca Huasco W, Riutta T, Girardin CAJ, Hancco Pacha F, Puma Vilca BL, Moore S, et al.
    Glob Chang Biol, 2021 08;27(15):3657-3680.
    PMID: 33982340 DOI: 10.1111/gcb.15677
    Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
    Matched MeSH terms: Rainforest*
  15. Numata S, Kachi N, Okuda T, Manokaran N
    Oecologia, 2017 Oct;185(2):213-220.
    PMID: 28852866 DOI: 10.1007/s00442-017-3935-z
    Parental distance and plant density dependence of seedling leaf turnover and survival was examined to investigate predictions of the Janzen-Connell hypothesis. The focal study species, Shorea macroptera is a canopy tree species in a lowland rain forest in peninsular Malaysia. We found that the peak of the distribution of plants shifted from 3-6 m to 6-9 m during the course of the change from seedling to sapling stage. The leaf demography of the seedlings was influenced by their distance from the adult tree and also by the seedling density. Although significant density- and distance dependence in leaf production was not detected, seedling leaf loss decreased with distance from the parent tree and with seedling density. Similarly, leaf damage was not found to be distance- or density-dependent, but net leaf gain of seedlings increased with distance from the parent tree. Although no significant distance- or density-dependence was evident in terms of leaf damage, significant distance dependence of the net leaf gain was found. Thus, we concluded that positive distance dependence in the leaf turnover of seedlings may gradually contribute to a shift in the distribution pattern of the progeny through reductions in growth and survivorship.
    Matched MeSH terms: Rainforest*
  16. Yeo TC, Naming M, Manurung R
    Comb Chem High Throughput Screen, 2014 Mar;17(3):192-200.
    PMID: 24409959
    The Sarawak Biodiversity Centre (SBC) is a state government agency which regulates research and promotes the sustainable use of biodiversity. It has a program on documentation of traditional knowledge (TK) and is well-equipped with facilities for natural product research. SBC maintains a Natural Product Library (NPL) consisting of local plant and microbial extracts for bioprospecting. The NPL is a core discovery platform for screening of bioactive compounds by researchers through a formal agreement with clear benefit sharing obligations. SBC aims to develop partnerships with leading institutions and the industries to explore the benefits of biodiversity.
    Matched MeSH terms: Rainforest
  17. Ishida A, Toma T, Matsumoto Y, Yap SK, Maruyama Y
    Tree Physiol, 1996 Sep;16(9):779-85.
    PMID: 14871685
    Dryobalanops aromatica Gaertn. f. is a major tropical canopy species in lowland tropical rain forests in Peninsular Malaysia. Diurnal changes in net photosynthetic rate (A) and stomatal conductance to water vapor (g(s)) were measured in fully expanded young and old leaves in the uppermost canopy (35 m above ground). Maximum A was 12 and 10 micro mol m(-2) s(-1) in young and old leaves, respectively; however, because of large variation in A among leaves, mean maximum A in young and old leaves was only 6.6 and 5.5 micro mol m(-2) s(-1), respectively. Both g(s) and A declined in young leaves when T(leaf) exceeded 34 degrees C and leaf-to-air vapor pressure deficit (DeltaW) exceeded 0.025, whereas in old leaves, g(s) and A did not start to decline until T(leaf) and DeltaW exceeded 36 degrees C and 0.035, respectively. Under saturating light conditions, A was linearly related to g(s). The coefficient of variation (CV) for the difference between the CO(2) concentrations of ambient air and the leaf intercellular air space (C(a) - C(i)) was smaller than the CV for A or g(s), suggesting that maximum g(s) was mainly controlled by mesophyll assimilation (A/C(i)). Minimum C(i)/C(a) ratios were relatively high (0.72-0.73), indicating a small drought-induced stomatal limitation to A and non-conservative water use in the uppermost canopy leaves.
    Matched MeSH terms: Rainforest
  18. Gaveau DL, Sheil D, Husnayaen, Salim MA, Arjasakusuma S, Ancrenaz M, et al.
    Sci Rep, 2016 Sep 08;6:32017.
    PMID: 27605501 DOI: 10.1038/srep32017
    New plantations can either cause deforestation by replacing natural forests or avoid this by using previously cleared areas. The extent of these two situations is contested in tropical biodiversity hotspots where objective data are limited. Here, we explore delays between deforestation and the establishment of industrial tree plantations on Borneo using satellite imagery. Between 1973 and 2015 an estimated 18.7 Mha of Borneo's old-growth forest were cleared (14.4 Mha and 4.2 Mha in Indonesian and Malaysian Borneo). Industrial plantations expanded by 9.1 Mha (7.8 Mha oil-palm; 1.3 Mha pulpwood). Approximately 7.0 Mha of the total plantation area in 2015 (9.2 Mha) were old-growth forest in 1973, of which 4.5-4.8 Mha (24-26% of Borneo-wide deforestation) were planted within five years of forest clearance (3.7-3.9 Mha oil-palm; 0.8-0.9 Mha pulpwood). This rapid within-five-year conversion has been greater in Malaysia than in Indonesia (57-60% versus 15-16%). In Indonesia, a higher proportion of oil-palm plantations was developed on already cleared degraded lands (a legacy of recurrent forest fires). However, rapid conversion of Indonesian forests to industrial plantations has increased steeply since 2005. We conclude that plantation industries have been the principle driver of deforestation in Malaysian Borneo over the last four decades. In contrast, their role in deforestation in Indonesian Borneo was less marked, but has been growing recently. We note caveats in interpreting these results and highlight the need for greater accountability in plantation development.
    Matched MeSH terms: Rainforest
  19. Tang ACI, Stoy PC, Hirata R, Musin KK, Aeries EB, Wenceslaus J, et al.
    Sci Total Environ, 2019 Sep 15;683:166-174.
    PMID: 31132697 DOI: 10.1016/j.scitotenv.2019.05.217
    Tropical rainforests control the exchange of water and energy between the land surface and the atmosphere near the equator and thus play an important role in the global climate system. Measurements of latent (LE) and sensible heat exchange (H) have not been synthesized across global tropical rainforests to date, which can help place observations from individual tropical forests in a global context. We measured LE and H for four years in a tropical peat forest ecosystem in Sarawak, Malaysian Borneo using eddy covariance, and hypothesize that the study ecosystem will exhibit less seasonal variability in turbulent fluxes than other tropical ecosystems as soil water is not expected to be limiting in a tropical forested wetland. LE and H show little variability across seasons in the study ecosystem, with LE values on the order of 11 MJ m-2 day and H on the order of 3 MJ m-2 day-1. Annual evapotranspiration (ET) did not differ among years and averaged 1579 ± 47 mm year-1. LE exceeded characteristic values from other tropical rainforest ecosystems in the FLUXNET2015 database with the exception of GF-Guy near coastal French Guyana, which averaged 8-11 MJ m-2 day-1. The Bowen ratio (Bo) in tropical rainforests in the FLUXNET2015 database either exhibited little seasonal trend, one seasonal peak, or two peaks. Volumetric water content (VWC) and VPD explained a trivial amount of the variability of LE and Bo in some of the tropical rainforests including the study ecosystem, but were strong controls in others, suggesting differences in stomatal regulation and/or the partitioning between evaporation and transpiration. Results demonstrate important differences in the seasonal patterns in water and energy exchange across different tropical rainforest ecosystems that need to be understood to quantify how ongoing changes in tropical rainforest extent will impact the global climate system.
    Matched MeSH terms: Rainforest*
  20. Thüs H, Wolseley P, Carpenter D, Eggleton P, Reynolds G, Vairappan CS, et al.
    Microorganisms, 2021 Mar 05;9(3).
    PMID: 33807993 DOI: 10.3390/microorganisms9030541
    Many lowland rainforests in Southeast Asia are severely altered by selective logging and there is a need for rapid assessment methods to identify characteristic communities of old growth forests and to monitor restoration success in regenerating forests. We have studied the effect of logging on the diversity and composition of lichen communities on trunks of trees in lowland rainforests of northeast Borneo dominated by Dipterocarpaceae. Using data from field observations and vouchers collected from plots in disturbed and undisturbed forests, we compared a taxonomy-based and a taxon-free method. Vouchers were identified to genus or genus group and assigned to functional groups based on sets of functional traits. Both datasets allowed the detection of significant differences in lichen communities between disturbed and undisturbed forest plots. Bark type diversity and the proportion of large trees, particularly those belonging to the family Dipterocarpaceae, were the main drivers of lichen community structure. Our results confirm the usefulness of a functional groups approach for the rapid assessment of tropical lowland rainforests in Southeast Asia. A high proportion of Dipterocarpaceae trees is revealed as an essential element for the restoration of near natural lichen communities in lowland rainforests of Southeast Asia.
    Matched MeSH terms: Rainforest
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links