Displaying publications 41 - 60 of 64 in total

Abstract:
Sort:
  1. Lim CS, Goh SL, Kariapper L, Krishnan G, Lim YY, Ng CC
    Clin Chim Acta, 2015 Aug 25;448:206-10.
    PMID: 26164385 DOI: 10.1016/j.cca.2015.07.008
    Development of indirect enzyme-linked immunosorbent assays (ELISAs) often utilizes synthetic peptides or recombinant proteins from Escherichia coli as immobilized antigens. Because inclusion bodies (IBs) formed during recombinant protein expression in E. coli are commonly thought as misfolded aggregates, only refolded proteins from IBs are used to develop new or in-house diagnostic assays. However, the promising utilities of IBs as nanomaterials and immobilized enzymes as shown in recent studies have led us to explore the potential use of IBs of recombinant Epstein-Barr virus viral capsid antigen p18 (VCA p18) as immobilized antigens in ELISAs for serologic detection of nasopharyngeal carcinoma (NPC).
    Matched MeSH terms: Recombinant Proteins/immunology
  2. Fischer K, Diederich S, Smith G, Reiche S, Pinho Dos Reis V, Stroh E, et al.
    PLoS One, 2018;13(4):e0194385.
    PMID: 29708971 DOI: 10.1371/journal.pone.0194385
    Hendra virus (HeV) and Nipah virus (NiV) belong to the genus Henipavirus in the family Paramyxoviridae. Henipavirus infections were first reported in the 1990's causing severe and often fatal outbreaks in domestic animals and humans in Southeast Asia and Australia. NiV infections were observed in humans in Bangladesh, India and in the first outbreak in Malaysia, where pigs were also infected. HeV infections occurred in horses in the North-Eastern regions of Australia, with singular transmission events to humans. Bats of the genus Pteropus have been identified as the reservoir hosts for henipaviruses. Molecular and serological indications for the presence of henipa-like viruses in African fruit bats, pigs and humans have been published recently. In our study, truncated forms of HeV and NiV attachment (G) proteins as well as the full-length NiV nucleocapsid (N) protein were expressed using different expression systems. Based on these recombinant proteins, Enzyme-linked Immunosorbent Assays (ELISA) were developed for the detection of HeV or NiV specific antibodies in porcine serum samples. We used the NiV N ELISA for initial serum screening considering the general reactivity against henipaviruses. The G protein based ELISAs enabled the differentiation between HeV and NiV infections, since as expected, the sera displayed higher reactivity with the respective homologous antigens. In the future, these assays will present valuable tools for serosurveillance of swine and possibly other livestock or wildlife species in affected areas. Such studies will help assessing the potential risk for human and animal health worldwide by elucidating the distribution of henipaviruses.
    Matched MeSH terms: Recombinant Proteins/immunology
  3. Lee W, Syed Atif A, Tan SC, Leow CH
    J Immunol Methods, 2017 08;447:71-85.
    PMID: 28502720 DOI: 10.1016/j.jim.2017.05.001
    The advantages of chicken (Gallus gallus domesticus) antibodies as immunodiagnostic and immunotherapeutic biomolecules has only been recently recognized. Even so, chicken antibodies remain less-well characterized than their mammalian counterparts. This review aims at providing a current overview of the structure, function, development and generation of chicken antibodies. Additionally, brief but comprehensive insights into current knowledge pertaining to the immunogenetic framework and diversity-generation of the chicken immunoglobulin repertoire which have contributed to the establishment of recombinant chicken mAb-generating methods are discussed. Focus is provided on the current methods used to generate antibodies from chickens with added emphasis on the generation of recombinant chicken mAbs and its derivative formats. The advantages and limitations of established protocols for the generation of chicken mAbs are highlighted. The various applications of recombinant chicken mAbs and its derivative formats in immunodiagnostics and immunotherapy are further detailed.
    Matched MeSH terms: Recombinant Proteins/immunology
  4. Yunus MH, Arifin N, Balachandra D, Anuar NS, Noordin R
    Am J Trop Med Hyg, 2019 08;101(2):432-435.
    PMID: 31218996 DOI: 10.4269/ajtmh.19-0053
    The conventional method of detecting Strongyloides stercoralis in fecal samples has poor diagnostic sensitivity. Detection of Strongyloides-specific antibodies increases the sensitivity; however, most tests are ELISAs that use parasite extract which may cross-react with the sera of other helminth infections. To improve the serological diagnosis of strongyloidiasis, this study aimed at developing a sensitive and specific lateral flow rapid dipstick test. Two recombinant proteins, recombinant NIE (rNIE) and recombinant Ss1a (rSs1a), were used in preparing the dipstick, with gold-conjugated antihuman IgG4 as detector reagent. In parallel, the corresponding ELISA was performed. Both assays demonstrated diagnostic sensitivity of 91.3% (21/23) when tested with serum samples of patients with Strongyloides infection, and 100% specificity with 82 sera of asymptomatic (healthy) and those with other parasitic infections. The ELISA and dipstick test results were positively correlated to each other (r = 0.6114, P = 0.0019). The developed lateral flow dipstick test may improve the serodiagnosis of strongyloidiasis and merit further validation studies.
    Matched MeSH terms: Recombinant Proteins/immunology
  5. Azemi NFH, Misnan R, Keong BP, Mokhtar M, Kamaruddin N, Fah WC, et al.
    Mol Biol Rep, 2021 Oct;48(10):6709-6718.
    PMID: 34427887 DOI: 10.1007/s11033-021-06661-x
    BACKGROUND: Tropomyosin is a major allergen in crustaceans, including mud crab species, but its molecular and allergenic properties in Scylla olivacea are not well known. Thus, this study aimed to produce the recombinant tropomyosin protein from S. olivacea and subsequently investigate its IgE reactivity.

    METHODS AND RESULTS: The tropomyosin gene was cloned and expressed in the Escherichia coli system, followed by SDS-PAGE and immunoblotting test to identify the allergenic potential of the recombinant protein. The 855-base pair of tropomyosin gene produced was found to be 99.18% homologous to Scylla serrata. Its 284 amino acids matched the tropomyosin of crustaceans, arachnids, insects, and Klebsiella pneumoniae, ranging from 79.03 to 95.77%. The tropomyosin contained 89.44% alpha-helix folding with a tertiary structure of two-chain alpha-helical coiled-coil structures comprising a homodimer heptad chain. IPTG-induced histidine tagged-recombinant tropomyosin was purified at the size of 42 kDa and confirmed as tropomyosin using anti-tropomyosin monoclonal antibodies. The IgE binding of recombinant tropomyosin protein was reactive in 90.9% (20/22) of the sera from crab-allergic patients.

    CONCLUSIONS: This study has successfully produced an allergenic recombinant tropomyosin from S. olivacea. This recombinant tropomyosin may be used as a specific allergen for the diagnosis of allergy.

    Matched MeSH terms: Recombinant Proteins/immunology*
  6. Sunderasan E, Bahari A, Arif SA, Zainal Z, Hamilton RG, Yeang HY
    Clin Exp Allergy, 2005 Nov;35(11):1490-5.
    PMID: 16297147 DOI: 10.1111/j.1365-2222.2005.02371.x
    BACKGROUND:
    Hev b 4 is an allergenic natural rubber latex (NRL) protein complex that is reactive in skin prick tests and in vitro immunoassays. On SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Hev b 4 is discerned predominantly at 53-55 kDa together with a 57 kDa minor component previously identified as a cyanogenic glucosidase. Of the 13 NRL allergens recognized by the International Union of Immunological Societies, the 53-55 kDa Hev b 4 major protein is the only candidate that lacks complete cDNA and protein sequence information.

    OBJECTIVE:
    We sought to clone the transcript encoding the Hev b 4 major protein, and characterize the native protein and its recombinant form in relation to IgE binding.

    METHODS:
    The 5'/3' rapid amplification of cDNA ends method was employed to obtain the complete cDNA of the Hev b 4 major protein. A recombinant form of the protein was over-expressed in Escherichia coli. The native Hev b 4 major protein was deglycosylated by trifluoromethane sulphonic acid. Western immunoblots of the native, deglycosylated and recombinant proteins were performed using both polyclonal antibodies and sera from latex-allergic patients.

    RESULTS:
    The cDNA encoding the Hev b 4 major protein was cloned. Its open reading frame matched lecithinases in the conserved domain database and contained 10 predicted glycosylation sites. Detection of glycans on the Hev b 4 lecithinase homologue confirmed it to be a glycoprotein. The deglycosylated lecithinase homologue was discerned at 40 kDa on SDS-PAGE, this being comparable to the 38.53 kDa mass predicted by its cDNA. Deglycosylation of the lecithinase homologue resulted in the loss of IgE recognition, although reactivity to polyclonal rabbit anti-Hev b 4 was retained. IgE from latex-allergic patients also failed to recognize the non-glycosylated E. coli recombinant lecithinase homologue.

    CONCLUSION:
    The IgE epitopes of the Hev b 4 lecithinase homologue reside mainly in its carbohydrate moiety, which also account for the discrepancy between the observed molecular weight of the protein and the value calculated from its cDNA.
    Matched MeSH terms: Recombinant Proteins/immunology
  7. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 May;32(5):670-82.
    PMID: 22293093 DOI: 10.1016/j.fsi.2012.01.013
    In this study, we reported a full length of catalase gene (designated as MrCat), identified from the transcriptome database of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrCat is 2504 base pairs in length, and encodes 516 amino acids. The MrCat protein contains three domains such as catalase 1 (catalase proximal heme-ligand signature) at 350-358, catalase 2 (catalase proximal active site signature) at 60-76 and catalase 3 (catalase family profile) at 20-499. The mRNA expressions of MrCat in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction (qRT-PCR). The MrCat is highly expressed in digestive tract and all the other tissues (walking leg, gills, muscle, hemocyte, hepatopancreas, pleopods, brain and eye stalk) of M. rosenbergii taken for analysis. The expression is strongly up-regulated in digestive tract after IHHNV challenge. To understand its biological activity, the recombinant MrCat gene was constructed and expressed in Escherichia coli BL21 (DE3). The recombinant MrCat existed in high thermal stability and broad spectrum of pH, which showed over 95% enzyme activity between pH 5 and 10.5, and was stable from 40 °C to 70 °C, and exhibited 85-100% enzyme activity from 30 °C to 40 °C.
    Matched MeSH terms: Recombinant Proteins/immunology
  8. Ong EB, Ignatius J, Anthony AA, Aziah I, Ismail A, Lim TS
    Microbiol. Immunol., 2015 Jan;59(1):43-7.
    PMID: 25399538 DOI: 10.1111/1348-0421.12211
    The detection and measurement of different antibody isotypes in the serum provide valuable indicators of the different stages of typhoid infection. Here, the ability of S. Typhi recombinant hemolysin E (HlyE) to detect multi-isotype antibody responses in sera of patients with typhoid and paratyphoid A was investigated using an indirect antibody immunoassay. Nanogram amounts of HlyE were found to be sufficient for detection of IgG and IgA isotypes and, in a study of individuals' sera (n = 100), the immunoassay was able to distinguish between typhoid and non-typhoid sera. The overall sensitivity, specificity and efficiency of the ELISA were 70% (39/56), 100% (44/44) and 83% respectively.
    Matched MeSH terms: Recombinant Proteins/immunology
  9. Rapeah S, Dhaniah M, Nurul AA, Norazmi MN
    Trop Biomed, 2010 Dec;27(3):461-9.
    PMID: 21399587 MyJurnal
    Macrophages are involved in innate immunity against malaria due to their ability to phagocytose infected erythrocytes and produce inflammatory cytokines, which are important for controlling parasite growth during malaria infection. In this study, the ability of a recombinant BCG (rBCG) vaccine expressing the 19-kDa C-terminus of merozoite surface protein-1 (MSP1-C) of Plasmodium falciparum, to stimulate the phagocytic activity and secretion of pro-inflammatory cytokines by the macrophage cell line J774A.1 was measured at varying times. The results demonstrate the ability of the rBCG construct to activate the inflammatory action of macrophages, which is important as a first-line of defence in clearing malaria infections.
    Matched MeSH terms: Recombinant Proteins/immunology
  10. Lai JY, Klatt S, Lim TS
    Crit Rev Biotechnol, 2019 May;39(3):380-394.
    PMID: 30720351 DOI: 10.1080/07388551.2019.1566206
    Through the discovery of monoclonal antibody (mAb) technology, profound successes in medical treatment against a wide range of diseases have been achieved. This has led antibodies to emerge as a new class of biodrugs. As the "rising star" in the pharmaceutical market, extensive research and development in antibody production has been carried out in various expression systems including bacteria, insects, plants, yeasts, and mammalian cell lines. The major benefit of eukaryotic expression systems is the ability to carry out posttranslational modifications of the antibody. Glycosylation of therapeutic antibodies is one of these important modifications, due to its influence on antibody structure, stability, serum half-life, and complement recruitment. In recent years, the protozoan parasite Leishmania tarentolae has been introduced as a new eukaryotic expression system. L. tarentolae is rich in glycoproteins with oligosaccharide structures that are very similar to humans. Therefore, it is touted as a potential alternative to mammalian expression systems for therapeutic antibody production. Here, we present a comparative review on the features of the L. tarentolae expression system with other expression platforms such as bacteria, insect cells, yeasts, transgenic plants, and mammalian cells with a focus on mAb production.
    Matched MeSH terms: Recombinant Proteins/immunology
  11. Mirzadeh A, Saadatnia G, Golkar M, Babaie J, Noordin R
    Protein Expr Purif, 2017 05;133:66-74.
    PMID: 28263855 DOI: 10.1016/j.pep.2017.03.001
    SAG1-related sequence 3 (SRS3) is one of the major Toxoplasma gondii tachyzoite surface antigens and has been shown to be potentially useful for the detection of toxoplasmosis. This protein is highly conformational due to the presence of six disulfide bonds. To achieve solubility and antigenicity, SRS3 depends on proper disulfide bond formation. The aim of this study was to over-express the SRS3 protein with correct folding for use in serodiagnosis of the disease. To achieve this, a truncated SRS3 fusion protein (rtSRS3) was produced, containing six histidyl residues at both terminals and purified by immobilized metal affinity chromatography. The refolding process was performed through three methods, namely dialysis in the presence of chemical additives along with reduced/oxidized glutathione and drop-wise dilution methods with reduced/oxidized glutathione or reduced DTT/oxidized glutathione. Ellman's assay and ELISA showed that the protein folding obtained by the dialysis method was the most favorable, probably due to the correct folding. Subsequently, serum samples from individuals with chronic infection (n = 76), probable acute infection (n = 14), and healthy controls (n = 81) were used to determine the usefulness of the refolded rtSRS3 for Toxoplasma serodiagnosis. The results of the developed IgG-ELISA showed a diagnostic specificity of 91% and a sensitivity of 82.89% and 100% for chronic and acute serum samples, respectively. In conclusion, correctly folded rtSRS3 has the potential to be used as a soluble antigen for the detection of human toxoplasmosis.
    Matched MeSH terms: Recombinant Proteins/immunology
  12. Subramanian SK, Tey BT, Hamid M, Tan WS
    J Virol Methods, 2009 Dec;162(1-2):179-83.
    PMID: 19666056 DOI: 10.1016/j.jviromet.2009.07.034
    The broad species tropism of Nipah virus (NiV) coupled with its high pathogenicity demand a rapid search for a new biomarker candidate for diagnosis. The matrix (M) protein was expressed in Escherichia coli and purified using a Ni-NTA affinity column chromatography and sucrose density gradient centrifugation. The recombinant M protein with the molecular mass (Mr) of about 43 kDa was detected by anti-NiV serum and anti-myc antibody. About 50% of the M protein was found to be soluble and localized in cytoplasm when the cells were grown at 30 degrees C. Electron microscopic analysis showed that the purified M protein assembled into spherical particles of different sizes with diameters ranging from 20 to 50 nm. The purified M protein showed significant reactivity with the swine sera collected during the NiV outbreak, demonstrating its potential as a diagnostic reagent.
    Matched MeSH terms: Recombinant Proteins/immunology
  13. Pickering BS, Hardham JM, Smith G, Weingartl ET, Dominowski PJ, Foss DL, et al.
    Vaccine, 2016 09 14;34(40):4777-86.
    PMID: 27544586 DOI: 10.1016/j.vaccine.2016.08.028
    Hendra virus (HeV) and Nipah virus (NiV) are members of the genus Henipavirus, within the family Paramyxoviridae. Nipah virus has caused outbreaks of human disease in Bangladesh, Malaysia, Singapore, India and Philippines, in addition to a large outbreak in swine in Malaysia in 1998/1999. Recently, NiV was suspected to be a causative agent of an outbreak in horses in 2014 in the Philippines, while HeV has caused multiple human and equine outbreaks in Australia since 1994. A swine vaccine able to prevent shedding of infectious virus is of veterinary and human health importance, and correlates of protection against henipavirus infection in swine need to be better understood. In the present study, three groups of animals were employed. Pigs vaccinated with adjuvanted recombinant soluble HeV G protein (sGHEV) and challenged with HeV, developed antibody levels considered to be protective prior to the challenge (titers of 320). However, activation of the cell-mediated immune response was not detected, and the animals were only partially protected against challenge with 5×10(5) PFU of HeV per animal. In the second group, cross-neutralizing antibody levels against NiV in the sGHEV vaccinated animals did not reach protective levels, and with no activation of cellular immune memory, these animals were not protected against NiV. Only pigs orally infected with 5×10(4) PFU of NiV per animal were protected against nasal challenge with 5×10(5) PFU of NiV per animal. This group of pigs developed protective antibody levels, as well as cell-mediated immune memory. Peripheral blood mononuclear cells restimulated with UV-inactivated NiV upregulated IFN-gamma, IL-10 and the CD25 activation marker on CD4(+)CD8(+) T memory helper cells and to lesser extent on CD4(-)CD8(+) T cells. In conclusion, both humoral and cellular immune responses were required for protection of swine against henipaviruses.
    Matched MeSH terms: Recombinant Proteins/immunology
  14. Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, et al.
    Hum Vaccin Immunother, 2017 Feb;13(2):306-313.
    PMID: 27929750 DOI: 10.1080/21645515.2017.1264783
    Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
    Matched MeSH terms: Recombinant Proteins/immunology*
  15. Mohd Jaafar F, Attoui H, Gallian P, Isahak I, Wong KT, Cheong SK, et al.
    J Virol Methods, 2004 Mar 01;116(1):55-61.
    PMID: 14715307
    Banna virus (BAV, genus Seadornavirus, family Reoviridae) is an arbovirus suspected to be responsible for encephalitis in humans. Two genotypes of this virus are distinguishable: A (Chinese isolate, BAV-Ch) and B (Indonesian isolate, BAV-In6969) which exhibit only 41% amino-acid identity in the sequence of their VP9. The VP7 to VP12 of BAV-Ch and VP9 of BAV-In6969 were expressed in bacteria using pGEX-4T-2 vector. VP9 was chosen to establish an ELISA for BAV, based mainly on two observations: (i). VP9 is a major protein in virus-infected cells and is a capsid protein (ii). among all the proteins expressed, VP9 was obtained in high amount and showed the highest immuno-reactivity to anti-BAV ascitic fluid. The VP9s ELISA was evaluated in three populations: French blood donors and two populations (blood donors and patients with a neurological syndrome) from Malaysia, representing the region where the virus was isolated in the past. The specificity of this ELISA was >98%. In mice injected with live BAV, the assay detected IgG-antibody to BAV infection 21 days post-injection, which was confirmed by Western blot using BAV-infected cells. The VP9 ELISA permits to determine the sero-status of a population without special safety precautions and without any requirements to propagate the BAV. This test should be a useful tool for epidemiological survey of BAV.
    Matched MeSH terms: Recombinant Proteins/immunology
  16. Fong MY, Lau YL
    Parasitol Res, 2004 Jan;92(2):173-6.
    PMID: 14655048
    A gene encoding the larval excretory-secretory antigen TES-120 of the dog ascarid worm Toxocara canis was cloned into the methylotrophic yeast Pichia pastoris. Specificity of the recombinant TES-120 antigen produced by the yeast was investigated. Forty-five human serum samples from patients infected with different()parasitic organisms, including 8 cases of toxocariasis, were tested against the recombinant antigen in immunoblot assays. Results from the assays showed that the recombinant TES-120 antigen reacted with sera from toxocariasis patients only. This highly specific recombinant TES-120 antigen can potentially be used for the development of an inexpensive serodiagnostic assay for human toxocariasis.
    Matched MeSH terms: Recombinant Proteins/immunology*
  17. Kotresha D, Noordin R
    APMIS, 2010 Aug;118(8):529-42.
    PMID: 20666734 DOI: 10.1111/j.1600-0463.2010.02629.x
    Toxoplasma gondii is an important human pathogen with a worldwide distribution. It is primarily of medical importance for pregnant women and immunocompromised patients. Primary infection of the former is often associated with fetal infection, which can lead to abortion or severe neonatal malformation. Immunocompromised patients are at risk of contracting the severe form of the disease that may be fatal. Thus, detection of T. gondii infection with high sensitivity and specificity is crucial in the management of the disease. Toxoplasmosis is generally diagnosed by demonstrating specific immunoglobulin M (IgM) and IgG antibodies to toxoplasma antigens in the patient's serum sample. Most of the commercially available tests use T. gondii native antigens and display wide variations in test accuracy. Recombinant antigens have great potential as diagnostic reagents for use in assays to detect toxoplasmosis. Thus in this review, we address recent advances in the use of Toxoplasma recombinant proteins for serodiagnosis of toxoplasmosis.
    Matched MeSH terms: Recombinant Proteins/immunology
  18. Foong YT, Cheng HM, Sam CK, Dillner J, Hinderer W, Prasad U
    Int J Cancer, 1990 Jun 15;45(6):1061-4.
    PMID: 1693600
    The Epstein-Barr virus nuclear antigen I (EBNA I) is the only latent EBV antigen consistently expressed in malignant tissues of the nasopharynx. A 20-amino-acid synthetic peptide, p107 contains a major epitope of EBNA I. We tested sera from 210 patients with nasopharyngeal carcinoma (NPC) and from 128 normal individuals (NHS) for IgA antibodies to p107 using an enzyme-linked immunosorbent assay (ELISA). Whereas 191/210 (91%) of NPC patients had IgA antibodies to p107, only 17/128 (13.3%) of NHS had such antibodies and only 6/57 (10.5%) of sera from patients with malignancies other than NPC had IgA-p107 reactivity. Thirty-nine salivary samples from 46 NPC patients (84.8%) also contained IgA-p107 antibodies whereas only 3/42 (7.1%) of normal saliva samples were IgA-p107 positive. The results suggest that IgA antibodies to EBNA I may become a useful, easily measurable, marker for NPC.
    Matched MeSH terms: Recombinant Proteins/immunology
  19. Tiong V, Lam CW, Phoon WH, AbuBakar S, Chang LY
    Jpn J Infect Dis, 2017 Jan 24;70(1):26-31.
    PMID: 27169942 DOI: 10.7883/yoken.JJID.2015.501
    The genes for Nipah virus (NiV) proteins were amplified from viral RNA, cloned into the plasmid pTriEx-3 Hygro, expressed, and purified using immobilized metal affinity chromatography. The recombinant N, F, and G NiV proteins (rNiV-N, rNiV-F, and rNiV-G), were successfully expressed in Escherichia coli and purified with a yield of 4, 16, and 4 mg/L, respectively. All 3 recombinant viral proteins reacted with all 19 samples of NiV-positive human sera. The rNiV-N and rNiV-G proteins were the most immunogenic. The recombinant viral proteins did not react with any of the 12 NiV-negative sera. However, serum from a patient with a late-onset relapsing NiV infection complication was found to be primarily reactive to rNiV-G only. Additionally, there is a distinctive variation in the profile of antigen-reactive bands between the sample from a case of relapsing NiV encephalitis and that of acute NiV infection. The overall findings of this study suggest that the recombinant viral proteins have the potential to be developed further for use in the detection of NiV infection, and continuous biosurveillance of NiV infection in resource-limited settings.
    Matched MeSH terms: Recombinant Proteins/immunology*
  20. Tan WS, Ong ST, Eshaghi M, Foo SS, Yusoff K
    J Med Virol, 2004 May;73(1):105-12.
    PMID: 15042656
    The nucleocapsid (N) protein of Nipah virus (NiV) can be produced in three Escherichia coli strains [TOP10, BL21(DE3) and SG935] under the control of trc promoter. However, most of the product existed in the form of insoluble inclusion bodies. There was no improvement in the solubility of the product when this protein was placed under the control of T7 promoter. However, the solubility of the N protein was significantly improved by lowering the growth temperature of E. coli BL21(DE3) cell cultures. Solubility analysis of N- and C-terminally deleted mutants revealed that the full-length N protein has the highest solubility. The soluble N protein could be purified efficiently by sucrose gradient centrifugation and nickel affinity chromatography. Electron microscopic analysis of the purified product revealed that the N protein assembled into herringbone-like particles of different lengths. The C-terminal end of the N protein contains the major antigenic region when probed with antisera from humans and pigs infected naturally.
    Matched MeSH terms: Recombinant Proteins/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links