Displaying publications 41 - 60 of 445 in total

Abstract:
Sort:
  1. Rahman MM, Usman OL, Muniyandi RC, Sahran S, Mohamed S, Razak RA
    Brain Sci, 2020 Dec 07;10(12).
    PMID: 33297436 DOI: 10.3390/brainsci10120949
    Autism Spectrum Disorder (ASD), according to DSM-5 in the American Psychiatric Association, is a neurodevelopmental disorder that includes deficits of social communication and social interaction with the presence of restricted and repetitive behaviors. Children with ASD have difficulties in joint attention and social reciprocity, using non-verbal and verbal behavior for communication. Due to these deficits, children with autism are often socially isolated. Researchers have emphasized the importance of early identification and early intervention to improve the level of functioning in language, communication, and well-being of children with autism. However, due to limited local assessment tools to diagnose these children, limited speech-language therapy services in rural areas, etc., these children do not get the rehabilitation they need until they get into compulsory schooling at the age of seven years old. Hence, efficient approaches towards early identification and intervention through speedy diagnostic procedures for ASD are required. In recent years, advanced technologies like machine learning have been used to analyze and investigate ASD to improve diagnostic accuracy, time, and quality without complexity. These machine learning methods include artificial neural networks, support vector machines, a priori algorithms, and decision trees, most of which have been applied to datasets connected with autism to construct predictive models. Meanwhile, the selection of features remains an essential task before developing a predictive model for ASD classification. This review mainly investigates and analyzes up-to-date studies on machine learning methods for feature selection and classification of ASD. We recommend methods to enhance machine learning's speedy execution for processing complex data for conceptualization and implementation in ASD diagnostic research. This study can significantly benefit future research in autism using a machine learning approach for feature selection, classification, and processing imbalanced data.
    Matched MeSH terms: Decision Trees
  2. Rupert R, Lie GJCW, John DV, Annammala KV, Jani J, Rodrigues KF
    Data Brief, 2020 Dec;33:106351.
    PMID: 33072827 DOI: 10.1016/j.dib.2020.106351
    The data provided in the article includes the sequence of bacterial 16S rRNA gene from a high conservation value forest, logged forest, rubber plantation and oil palm plantation collected at Kelantan river basin. The logged forest area was previously notified as a flooding region. The total gDNA of bacterial community was amplified via polymerase chain reaction at V3-V4 regions using a pair of specific universal primer. Amplicons were sequenced on Illumina HiSeq paired-end platform to generate 250 bp paired-end raw reads. Several bioinformatics tools such as FLASH, QIIME and UPARSE were used to process the reads generated for OTU analysis. Meanwhile, R&D software was used to construct the taxonomy tree for all samples. Raw data files are available at the Sequence Read Archive (SRA), NCBI and data information can be found at the BioProject and BioSample, NCBI. The data shows the comparison of bacterial community between the natural forest and different land uses.
    Matched MeSH terms: Trees
  3. Saliu IS, Wolswijk G, Satyanarayana B, Fisol MAB, Decannière C, Lucas R, et al.
    Data Brief, 2020 Dec;33:106386.
    PMID: 33102654 DOI: 10.1016/j.dib.2020.106386
    The dataset contains tree height data collected in 200 mangrove and non-mangrove trees sampled in various sites in Malaysia. Different height measurement methods were performed, including visual measurements (stick, thumb rule) and precision field instruments (clinometer, laser rangefinder and altimeter), which were compared against benchmark values obtained using an unmanned aerial vehicle (UAV) and a Leica distometer. The core data have been analysed and interpreted in the paper by Saliu et al. ''An accuracy analysis of mangrove tree height mensuration using forestry techniques, hypsometers and UAVs '' [1], in which the accuracy of each method for tree height measurement was discussed.
    Matched MeSH terms: Trees
  4. Osman NA, Abdul-Latiff MAB, Mohd-Ridwan AR, Yaakop S, Nor SM, Md-Zain BM
    Animals (Basel), 2020 Nov 26;10(12).
    PMID: 33255964 DOI: 10.3390/ani10122215
    Understanding dietary diversity is a fundamental task in the study of stump-tailed macaque, Macaca arctoides in its natural habitat. However, direct feeding observation and morphological identification using fecal samples are not effective and nearly impossible to obtain in natural habitats because this species is sensitive to human presence. As ecological methods are challenging and time-consuming, DNA metabarcoding offers a more powerful assessment of the diet. We used a chloroplast tRNL DNA metabarcoding approach to identify the diversity of plants consumed by free-ranging M. arctoides in the Malaysia-Thailand border region located in Perlis State Park, Peninsular Malaysia. DNA was extracted from three fecal samples, and chloroplast tRNL DNA was amplified and sequenced using the Illumina MiniSeq platform. Sequences were analyzed using the CLC Genomic Workbench software. A total of 145 plant species from 46 families were successfully identified as being consumed by M. arctoides. The most abundant species were yellow saraca, Saraca thaipingensis (11.70%), common fig, Ficus carica (9.33%), aramata, Clathrotropis brachypetala (5.90%), sea fig, Ficus superba (5.44%), and envireira, Malmea dielsiana (1.70%). However, Clathrotropis and Malmea are not considered Malaysian trees because of limited data available from Malaysian plant DNA. Our study is the first to identify plant taxa up to the species level consumed by stump-tailed macaques based on a DNA metabarcoding approach. This result provides an important understanding on diet of wild M. arctoides that only reside in Perlis State Park, Malaysia.
    Matched MeSH terms: Trees
  5. Takahashi M, Feng Z, Mikhailova TA, Kalugina OV, Shergina OV, Afanasieva LV, et al.
    Sci Total Environ, 2020 Nov 10;742:140288.
    PMID: 32721711 DOI: 10.1016/j.scitotenv.2020.140288
    Air pollution and atmospheric deposition have adverse effects on tree and forest health. We reviewed studies on tree and forest decline in Northeast and Southeast Asia, Siberia, and the Russian Far East (hereafter referred to as East Asia). This included studies published in domestic journals and languages. We identified information about the locations, causes, periods, and tree species exhibiting decline. Past air pollution was also reviewed. Most East Asian countries show declining trends in SO2 concentration in recent years, although Mongolia and Russia show increasing trends. Ozone (O3) concentrations are stable or gradually increasing in the East Asia region, with high maxima. Wet nitrogen (N) deposition was high in China and tropical countries, but low in Russia. The decline of trees and forests primarily occurred in the mid-latitudes of Japan, Korea, China, and Russia. Long-term large N deposition resulted in the N saturation phenomenon in Japan and China, but no clear forest health response was observed. Thereafter, forest decline symptoms, suspected to be caused by O3, were observed in Japan and China. In East Russia, tree decline occurred around industrial centers in Siberia. Haze events have been increasing in tropical and boreal forests, and particulate matter inhibits photosynthesis. In recent years, chronically high O3 concentrations, in conjunction with climate change, are likely have adverse effects on tree physiology. The effects of air pollution and related factors on tree decline are summarized. Recently, the effects of air pollution on tree decline have not been apparent under the changing climate, however, monitoring air pollution is indispensable for identifying the cause of tree decline. Further economic growth is projected in Southeast Asia and therefore, the monitoring network should be expanded to tropical and boreal forest zones. Countermeasures such as restoring urban trees and rural forests are important for ensuring future ecosystem services.
    Matched MeSH terms: Trees
  6. Kobayashi MJ, Ng KKS, Lee SL, Muhammad N, Tani N
    Am J Bot, 2020 11;107(11):1491-1503.
    PMID: 33190268 DOI: 10.1002/ajb2.1557
    PREMISE: Leaf phenology is an essential developmental process in trees and an important component in understanding climate change. However, little is known about the regulation of leaf phenology in tropical trees.

    METHODS: To understand the regulation by temperature of leaf phenology in tropical trees, we performed daily observations of leaf production under rainfall-independent conditions using saplings of Shorea leprosula and Neobalanocarpus heimii, both species of Dipterocarpaceae, a dominant tree family of Southeast Asia. We analyzed the time-series data obtained using empirical dynamic modeling (EDM) and conducted growth chamber experiments.

    RESULTS: Leaf production by dipterocarps fluctuated in the absence of fluctuation in rainfall, and the peaks of leaf production were more frequent than those of day length, suggesting that leaf production cannot be fully explained by these environmental factors, although they have been proposed as regulators of leaf phenology in dipterocarps. Instead, EDM suggested a causal relationship between temperature and leaf production in dipterocarps. Leaf production by N. heimii saplings in chambers significantly increased when temperature was increased after long-term low-temperature treatment. This increase in leaf production was observed even when only nighttime temperature was elevated, suggesting that the effect of temperature on development is not mediated by photosynthesis.

    CONCLUSIONS: Because seasonal variation in temperature in the tropics is small, effects on leaf phenology have been overlooked. However, our results suggest that temperature is a regulator of leaf phenology in dipterocarps. This information will contribute to better understanding of the effects of climate change in the tropics.

    Matched MeSH terms: Trees
  7. Messina S, Edwards DP, AbdElgawad H, Beemster GTS, Tomassi S, Benedick S, et al.
    J Anim Ecol, 2020 10;89(10):2222-2234.
    PMID: 32535926 DOI: 10.1111/1365-2656.13280
    Selective logging is the dominant form of human disturbance in tropical forests, driving changes in the abundance of vertebrate and invertebrate populations relative to undisturbed old-growth forests. A key unresolved question is understanding which physiological mechanisms underlie different responses of species and functional groups to selective logging. Regulation of oxidative status is thought to be one major physiological mechanism underlying the capability of species to cope with environmental changes. Using a correlational cross-sectional approach, we compared a number of oxidative status markers among 15 understorey bird species in unlogged and selectively logged forest in Borneo in relation to their feeding guild. We then tested how variation of markers between forest types was associated with that in population abundance. Birds living in logged forests had a higher activity of the antioxidant enzyme superoxide dismutase and a different regulation of the glutathione cycle compared to conspecific birds in unlogged forest. However, neither oxidative damage nor oxidized glutathione differed between forest types. We also found that omnivores and insectivores differed significantly in all markers related to the key cellular antioxidant glutathione irrespective of the forest type. Species with higher levels of certain antioxidant markers in a given type of forest were less abundant in that forest type compared to the other. Our results suggest that there was little long-term effect of logging (last logging rotation occurred ~15 years prior to the study) on the oxidative status of understorey bird species. However, it is unclear if this was owing to plasticity or evolutionary change. Our correlative results also point to a potential negative association between some antioxidants and population abundance irrespective of the forest type.
    Matched MeSH terms: Trees
  8. Weemstra M, Peay KG, Davies SJ, Mohamad M, Itoh A, Tan S, et al.
    New Phytol, 2020 10;228(1):253-268.
    PMID: 32436227 DOI: 10.1111/nph.16672
    Arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) produce contrasting plant-soil feedbacks, but how these feedbacks are constrained by lithology is poorly understood. We investigated the hypothesis that lithological drivers of soil fertility filter plant resource economic strategies in ways that influence the relative fitness of trees with AMF or EMF symbioses in a Bornean rain forest containing species with both mycorrhizal strategies. Using forest inventory data on 1245 tree species, we found that although AMF-hosting trees had greater relative dominance on all soil types, with declining lithological soil fertility EMF-hosting trees became more dominant. Data on 13 leaf traits and wood density for a total of 150 species showed that variation was almost always associated with soil type, whereas for six leaf traits (structural properties; carbon, nitrogen, phosphorus ratios, nitrogen isotopes), variation was also associated with mycorrhizal strategy. EMF-hosting species had slower leaf economics than AMF-hosts, demonstrating the central role of mycorrhizal symbiosis in plant resource economies. At the global scale, climate has been shown to shape forest mycorrhizal composition, but here we show that in communities it depends on soil lithology, suggesting scale-dependent abiotic factors influence feedbacks underlying the relative fitness of different mycorrhizal strategies.
    Matched MeSH terms: Trees
  9. Fahad Ahmad A, Aziz SHA, Abbas Z, Mohammad Abdalhadi D, Khamis AM, Aliyu US
    Polymers (Basel), 2020 Aug 26;12(9).
    PMID: 32858790 DOI: 10.3390/polym12091919
    This article describes attenuation and absorption measurements using the microstrip transmission line technique connected with a microwave vector network analyzer (Agilent 8750B). The magnitudes of the reflection (S11) and transmission (S21) coefficients obtained from the microstrip transmission line were used to determine the attenuation and absorption of oil palm empty fruit bunch/polylactic acid (OPEFB/PLA) composites in a frequency range between 0.20 GHz and 12 GHz at room temperature. The main structure of semi-flexible substrates (OPEFF/PLA) was fabricated using different fiber loading content extracted from oil palm empty fruit bunch (OPEFB) trees hosted in polylactic acid (PLA) using the Brabender blending machine, which ensured mixture homogeneity. The commercial software package, Computer Simulation Technology Microwave Studio (CSTMWS), was used to investigate the microstrip line technique performance by simulating and determine the S11 and S21 for microwave substrate materials. Results showed that the materials' transmission, reflection, attenuation, and absorption properties could be controlled by changing the percentage of OPEFB filler in the composites. The highest absorption loss was calculated for the highest percentage of filler (70%) OPEFB at 12 GHz to be 0.763 dB, while the lowest absorption loss was calculated for the lowest percentage of filler 30% OPEFB at 12 GHz to be 0.407 dB. Finally, the simulated and measured results were in excellent agreement, but the environmental conditions slightly altered the results. From the results it is observed that the value of the dielectric constant (εr') and loss factor (εr″) is higher for the OPEFB/PLA composites with a higher content of OPEFB filler. The dielectric constant increased from 2.746 dB to 3.486 dB, while the loss factor increased from 0.090 dB to 0.5941 dB at the highest percentage of 70% OPEFB filler. The dielectric properties obtained from the open-ended coaxial probe were required as input to FEM to calculate the S11 and S21 of the samples.
    Matched MeSH terms: Trees
  10. Hanya G, Kanamori T, Kuze N, Wong ST, Bernard H
    Am J Primatol, 2020 08;82(8):e23157.
    PMID: 32515849 DOI: 10.1002/ajp.23157
    Knowledge of niche partitioning with respect to habitat is indispensable to understand the mechanism of coexistence of multiple species. Among primates, however, data are still deficient because repeated survey for a sufficiently long time, covering seasonal changes over a large area, is the only way to clarify habitat segregation within a seasonally fluctuating environment. Southeast Asia is particularly interesting because of the supra-annual, highly unpredictable seasonality in fruiting known as mast fruiting. We conducted repeated route census, habitat monitoring, and group tracking for 25 months in two study sites (ca. 10 km apart) in the largely primary lowland dipterocarp forest of the Danum Valley Conservation Area, eastern Sabah, northern Borneo, Malaysia. The five species of diurnal primates (Bornean orangutan Pongo pygmaeus, Müeller's gibbon Hylobates muelleri, red leaf monkey Presbytis rubicunda, long-tailed macaque Macaca fascicularis, and southern pig-tailed macaque M. nemestrina) did not show horizontal spatial segregation. Red leaf monkeys showed preferences for places with short tree height, but their distribution was not confined to such places. In response to the fruiting peak observed once during the study period, orangutans increased their numbers simultaneously in the two study sites. The average tree height used by the five species was different, but their range overlapped substantially. Compared with other primate communities, the lack of horizontal spatial segregation and the suggested long-distance movement of orangutans seem to be unique characteristics in Borneo, although the use of different forest strata is a widespread phenomenon among primate communities throughout the world.
    Matched MeSH terms: Trees
  11. Yusuf SNA, Rahman AMA, Zakaria Z, Subbiah VK, Masnan MJ, Wahab Z
    Trop Life Sci Res, 2020 Jul;31(2):107-143.
    PMID: 32922671 DOI: 10.21315/tlsr2020.31.2.6
    Harumanis is one of the main signatures of Perlis with regards to its delightful taste, pleasant aroma and expensive price. Harumanis authenticity and productivity had become the remarks among the farmers, entrepreneurs, consumers and plant breeders due to the existence of morphological characteristics variation among the fruits and high production cost. Assessment of Harumanis morphological characteristics of natural population and different tree ages may represent a possible source of important characteristics for development and breeding purposes of Harumanis. The aim of this study is to evaluate the morphological variation of Harumanis collected from different location in Perlis and tree age. A total of 150 Harumanis fruits from 50 trees with three different stages of development (young, middle-aged and old) were characterised using 11 traits; 10 quantitative and one qualitative morphological trait. The ANOVA analyses in combination with Dunn's pairwise and Kruskal-Wallis multiple comparison test able to point out the existence of environmental factor and age influence towards the significant different of identified morphological traits except for Total Soluble Solid (TSS) and pulp percentage. Five clusters of 50 Harumanis accessions reflect a grouping pattern which not according to neither geographical region nor age. The result of Principal Component Analysis (PCA) using the first two principal components (PCs) provided a good approximation of the data explaining 84.09% of the total variance which majorly contributed by parameters of weight, fruit dimensional characteristics, peel percentage and hue angle, h. Preliminary screening of important morphological characteristics which contribute to the phenotypic diversity of Harumanis is successfully achieved. The findings can be employed by the plant breeders and farmers for the establishment of standard grading of Harumanis and advancement of breeding crop of Harumanis in future.
    Matched MeSH terms: Trees
  12. Harith-Fadzilah N, Haris-Hussain M, Abd Ghani I, Zakaria A, Amit S, Zainal Z, et al.
    Insects, 2020 Jun 30;11(7).
    PMID: 32630104 DOI: 10.3390/insects11070407
    The red palm weevil (RPW) is a stem boring Coleoptera that decimates host palm trees from within. The challenge of managing this pest is due to a lack of physical symptoms during the early stages of infestation. Investigating the physiological changes that occur within RPW-infested palm trees may be useful in establishing a new approach in RPW detection. In this study, the effects of RPW infestation were investigated in Elaeis guineensis by observing changes in physical and physiological parameters during the progress of infestation by visual inspection and the comparison of growth, gas exchange, stomatal conductance, and chlorophyll content between the non-infested control, physically wounded, and RPW-infested E. guineensis groups. During the study period, four distinct levels of physical infestation were observed and recorded. The RPW-infested group displayed significantly lower maximum photosynthesis activity (Amax) starting from the third week post-infestation. However, growth in terms of change in plant height and stem circumference, leaves' stomatal conductance, and chlorophyll content were not significantly different between the three groups during the duration of the study. The significant drop in photosynthesis was observed one week before physical changes appeared. This suggests the promising utilisation of photosynthesis activity as a signal for detecting RPW infestation at the early stage of attacks, which could be useful for integration in integrated pest management (IPM).
    Matched MeSH terms: Trees
  13. Xu H, Detto M, Fang S, Chazdon RL, Li Y, Hau BCH, et al.
    Commun Biol, 2020 06 19;3(1):317.
    PMID: 32561898 DOI: 10.1038/s42003-020-1041-y
    Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16-60 ha) ranging from 5.25° S to 29.25° N latitude show that within forests, leguminous trees have a larger effect on neighbor diversity than non-legumes. Where soil nitrogen is high, most legume species have higher neighbor diversity than non-legumes. Where soil nitrogen is low, most legumes have lower neighbor diversity than non-legumes. No facilitation effect on neighbor basal area was observed in either high or low soil N conditions. The legume-soil nitrogen positive feedback that promotes tree diversity has both theoretical implications for understanding species coexistence in diverse forests, and practical implications for the utilization of legumes in forest restoration.
    Matched MeSH terms: Trees*
  14. Zohner CM, Mo L, Renner SS, Svenning JC, Vitasse Y, Benito BM, et al.
    Proc Natl Acad Sci U S A, 2020 06 02;117(22):12192-12200.
    PMID: 32393624 DOI: 10.1073/pnas.1920816117
    Late-spring frosts (LSFs) affect the performance of plants and animals across the world's temperate and boreal zones, but despite their ecological and economic impact on agriculture and forestry, the geographic distribution and evolutionary impact of these frost events are poorly understood. Here, we analyze LSFs between 1959 and 2017 and the resistance strategies of Northern Hemisphere woody species to infer trees' adaptations for minimizing frost damage to their leaves and to forecast forest vulnerability under the ongoing changes in frost frequencies. Trait values on leaf-out and leaf-freezing resistance come from up to 1,500 temperate and boreal woody species cultivated in common gardens. We find that areas in which LSFs are common, such as eastern North America, harbor tree species with cautious (late-leafing) leaf-out strategies. Areas in which LSFs used to be unlikely, such as broad-leaved forests and shrublands in Europe and Asia, instead harbor opportunistic tree species (quickly reacting to warming air temperatures). LSFs in the latter regions are currently increasing, and given species' innate resistance strategies, we estimate that ∼35% of the European and ∼26% of the Asian temperate forest area, but only ∼10% of the North American, will experience increasing late-frost damage in the future. Our findings reveal region-specific changes in the spring-frost risk that can inform decision-making in land management, forestry, agriculture, and insurance policy.
    Matched MeSH terms: Trees/growth & development*
  15. Zakaria N, Tarmizi AA, Zuki MAM, Ahmad AB, Mamat MA, Abdullah MT
    Data Brief, 2020 Jun;30:105567.
    PMID: 32382599 DOI: 10.1016/j.dib.2020.105567
    This data article is about bats observed from fragmented forest understories interspaced by agricultural plantations, utility corridors, and man-made structures within rural areas of Setiu (Bukit Kesing Forest Reserve and Ladang Tayor TDM) and Hulu Terengganu (Pengkalan Utama and Sungai Buweh, Kenyir) that are situated in Terengganu state, Peninsular Malaysia. Surveys were conducted from October 2018 until January 2019. These bats were captured using harp traps and mist nets that were set 30 m apart across flyways, streams, rivers and less cluttered trees in the 50 m transect zones (identified at each site). All animals captured were distinguished by morphology and released at the same location it was caught. The data comprise of 15 species of bats from four family groups, namely Hipposideridae, Pteropodidae, Rhinolophidae and Vespertilionidae. The data were interpreted into weight-forearm length (W-FA) to inform about bats Body Condition Index (-0.25 to 0.25).
    Matched MeSH terms: Trees
  16. Sullivan MJP, Lewis SL, Affum-Baffoe K, Castilho C, Costa F, Sanchez AC, et al.
    Science, 2020 05 22;368(6493):869-874.
    PMID: 32439789 DOI: 10.1126/science.aaw7578
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.
    Matched MeSH terms: Trees/metabolism*
  17. Bui DT, Khosravi K, Karimi M, Busico G, Khozani ZS, Nguyen H, et al.
    Sci Total Environ, 2020 May 01;715:136836.
    PMID: 32007881 DOI: 10.1016/j.scitotenv.2020.136836
    Groundwater resources constitute the main source of clean fresh water for domestic use and it is essential for food production in the agricultural sector. Groundwater has a vital role for water supply in the Campanian Plain in Italy and hence a future sustainability of the resource is essential for the region. In the current paper novel data mining algorithms including Gaussian Process (GP) were used in a large groundwater quality database to predict nitrate (contaminant) and strontium (potential future increasing) concentrations in groundwater. The results were compared with M5P, random forest (RF) and random tree (RT) algorithms as a benchmark to test the robustness of the modeling process. The dataset includes 246 groundwater quality samples originating from different wells, municipals and agricultural. It was divided for the modeling process into two subgroups by using the 10-fold cross validation technique including 173 samples for model building (training dataset) and 73 samples for model validation (testing dataset). Different water quality variables including T, pH, EC, HCO3-, F-, Cl-, SO42-, Na+, K+, Mg2+, and Ca2+ have been used as an input to the models. At first stage, different input combinations have been constructed based on correlation coefficient and thus the optimal combination was chosen for the modeling phase. Different quantitative criteria alongside with visual comparison approach have been used for evaluating the modeling capability. Results revealed that to obtain reliable results also variables with low correlation should be considered as an input to the models together with those variables showing high correlation coefficients. According to the model evaluation criteria, GP algorithm outperforms all the other models in predicting both nitrate and strontium concentrations followed by RF, M5P and RT, respectively. Result also revealed that model's structure together with the accuracy and structure of the data can have a relevant impact on the model's results.
    Matched MeSH terms: Trees
  18. Ordway EM, Asner GP
    Proc Natl Acad Sci U S A, 2020 04 07;117(14):7863-7870.
    PMID: 32229568 DOI: 10.1073/pnas.1914420117
    Nearly 20% of tropical forests are within 100 m of a nonforest edge, a consequence of rapid deforestation for agriculture. Despite widespread conversion, roughly 1.2 billion ha of tropical forest remain, constituting the largest terrestrial component of the global carbon budget. Effects of deforestation on carbon dynamics in remnant forests, and spatial variation in underlying changes in structure and function at the plant scale, remain highly uncertain. Using airborne imaging spectroscopy and light detection and ranging (LiDAR) data, we mapped and quantified changes in forest structure and foliar characteristics along forest/oil palm boundaries in Malaysian Borneo to understand spatial and temporal variation in the influence of edges on aboveground carbon and associated changes in ecosystem structure and function. We uncovered declines in aboveground carbon averaging 22% along edges that extended over 100 m into the forest. Aboveground carbon losses were correlated with significant reductions in canopy height and leaf mass per area and increased foliar phosphorus, three plant traits related to light capture and growth. Carbon declines amplified with edge age. Our results indicate that carbon losses along forest edges can arise from multiple, distinct effects on canopy structure and function that vary with edge age and environmental conditions, pointing to a need for consideration of differences in ecosystem sensitivity when developing land-use and conservation strategies. Our findings reveal that, although edge effects on ecosystem structure and function vary, forests neighboring agricultural plantations are consistently vulnerable to long-lasting negative effects on fundamental ecosystem characteristics controlling primary productivity and carbon storage.
    Matched MeSH terms: Trees
  19. Afiq Ramlee MN, Hussin MF, Roslan A, Rosmidi FH, Pesiu E, Aisyah A Rahim N, et al.
    Data Brief, 2020 Apr;29:105328.
    PMID: 32181296 DOI: 10.1016/j.dib.2020.105328
    This data article presents the diversity of flora and selected fauna in Tasik Kenyir, Malaysia. This man-made lake once suffered huge loss of biodiversity for allowing an earth-dam construction during 1980s. Series of publications on different types of target taxa have been published separately after the post-dam construction. A biodiversity assessment was conducted in Tasik Kenyir from March 2015 until February 2016. The one year assessment were compiled with the previous published data to document and updated the biodiversity checklist in the lake. The data show that Tasik Kenyir is occupied by 113 tree species, 217 butterfly species, 35 bee species, 26 reptile species, 267 aves species and 153 mammal species. The micro-climate data was downloaded from the Malaysian Meteorological Department and analysed in R Studio to highlight the relationship between climate data and biodiversity data.
    Matched MeSH terms: Trees
  20. Pern YC, Lee SY, Ng WL, Mohamed R
    3 Biotech, 2020 Mar;10(3):103.
    PMID: 32099744 DOI: 10.1007/s13205-020-2072-2
    Tree species in the Aquilarieae tribe of the Thymelaeaceae family produce agarwood, a natural product highly valued for its fragrance, but the species are under threat due to indiscriminate harvesting. For conservation of these species, molecular techniques such as DNA profiling have been used. In this study, we assessed cross-amplification of microsatellite markers, initially developed for three Aquilaria species (A.crassna, A.malaccensis, and A.sinensis), on ten other agarwood-producing species, including members of Aquilaria (A.beccariana, A.hirta, A.microcarpa, A.rostrata, A.rugosa, A.subintegra, and A.yunnanensis) and Gyrinops (G.caudata, G.versteegii, and G.walla), both from the Aquilarieae tribe. Primers for 18 out of the 30 microsatellite markers successfully amplified bands of expected sizes in 1 sample each of at least 10 species. These were further used to genotype 74 individuals representing all the 13 studied species, yielding 13 cross-amplifiable markers, of which only 1 being polymorphic across all species. At each locus, the number of alleles ranged from 7 to 23, indicating a rather high variability. Four markers had relatively high species discrimination power. Our results demonstrated that genetic fingerprinting can be an effective tool in helping to manage agarwood genetic resources by potentially supporting the chain-of-custody of agarwood and its products in the market.
    Matched MeSH terms: Trees
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links