Clinical utilization of carbapenems remains under threat with the emergence of acquired carbapenemase-producing bacteria, particularly metallo-β-lactamases (MBL). Rapid detection of MBL-producing Gram-negative bacilli is essential to prevent their widespread dissemination. However, no standardized detection method is available for routine laboratory use. The purpose of the study was to evaluate a chelating-agent based double disk synergic test and disk potentiation test for MBL-producing strain detection and to determine the isolation rate of MBL-producing Pseudomonas aeruginosa and Acinetobacter from clinical samples in our tertiary teaching hospital. A total of 22 and 66 imipenem-resistant P. aeruginosa and Acinetobacter isolates respectively were tested with ceftazidime (CAZ) disk by modified double disk synergic test and disk potentiation test using ethylenediaminetetraacetic acid (EDTA) and 2-mercaptopropionic acid (as chelating agents) to detect MBL production. The tests were compared with EDTA-phenanthroline-imipenem (EPI) microdilution MIC test as gold standard. MBL positive strains were detected in 17 (77.3%) P. aeruginosa and 2 (3.5%) Acinetobacter isolates. The disk potentiation test with 2-mercaptopropionic acid (2-MPA) dilution of 1:12 provided the most acceptable sensitivities and specificities (88.2% sensitivity and 100% specificity in P. aeruginosa; 100% sensitivity and specificity in Acinetobacter) compared to other screening methods used in this study. This study provided useful information on the local prevalence of MBL-producing P. aeruginosa and Acinetobacter in our hospital. Disc potentiation test with CAZ/2-MPA disc appears to be reliable and convenient MBL detection method in the routine clinical laboratory.
Community-acquired pneumonia (CAP) is still a major cause of morbidity and mortality especially to children and compromised hosts, such as the old and those with underlying chronic diseases. Knowledge of pathogens causing CAP constitutes the basis for selection of antimicrobial treatment. Previous data have shown that etiological agents can be identified in only up to 50% of patients, but this figure can be improved by using polymerase chain reaction (PCR). This study was designed to evaluate multiplex real-time PCR as a method for rapid differential detection of five bacterial causes of CAP (Streptococcus pneumoniae, Burkholderia pseudomallei and atypical bacterial pathogens namely Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila) in CAP patients attending Hospital Tengku Ampuan Afzan (HTAA)/ Kuantan, Pahang, Malaysia. Two previously developed multiplex real-time PCR assays, duplex for the differential detection of S. pneumoniae and B. pseudomallei and triplex for the atypical bacterial pathogens, were used to detect a bacterial cause of CAP in blood and respiratory samples. Thus, 46 blood and 45 respiratory samples collected from 46 adult CAP patients admitted to HTAA were analysed by multiplex real-time PCR assays and conventional methods. The microbial etiology of CAP could be established for 39.1% (18/46) of CAP patients by conventional methods and this was increased to 65.2% (30/46) with the additional use of real-time PCR. The most frequently detected pathogens were S. pneumoniae (21.7% - all by PCR alone), Klebsiella pneumoniae (17.3%), B. pseudomallei (13% - 83% of them positive by PCR alone and 17% by both culture and PCR), Pseudomonas aeruginosa (6.5%), M. pneumoniae (6.5% - all by serology), C. pneumoniae (4.3% - all positive by both PCR and serology), L. pneumophila (2.1% - all by PCR alone), Escherichia coli (4.3%). Haemophilus infuenzae, Acinetobacter lwoffii and Acinetobacter baumannii were detected by conventional methods (2.1% for each).
A PCR-based assay that can simultaneously detect and differentiate five different types of nosocomial bacterial pathogens was developed. Six pairs of selected primers targeting femA (132 bp) and mecA (310 bp) of methicillin-resistant Staphylococcus aureus, gltA (722 bp) of Acinetobacter baumannii, phoA (903 bp) of Escherichia coli, mdh (364 bp) of Klebsiella pneumoniae and oprL (504 bp) of Pseudomonas aeruginosa were used in this study. The conditions were optimized for the multiplex PCR to ensure specific amplification of the selected targets. Sensitivity and specificity tests were also carried out using a blind test approach on 50 bacterial cultures and resulted in 100% for both positive and negative predictive values.
Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC), is an infectious disease with more than 10.4 million cases and 1.7 million deaths reported worldwide in 2016. The classical methods for detection and differentiation of mycobacteria are: acid-fast microscopy (Ziehl-Neelsen staining), culture, and biochemical methods. However, the microbial phenotypic characterization is time-consuming and laborious. Thus, fast, easy, and sensitive nucleic acid amplification tests (NAATs) have been developed based on specific DNA markers, which are commercially available for TB diagnosis. Despite these developments, the disease remains uncontrollable. The identification and differentiation among MTBC members with the use of NAATs remains challenging due, among other factors, to the high degree of homology within the members and mutations, which hinders the identification of specific target sequences in the genome with potential impact in the diagnosis and treatment outcomes. In silico methods provide predictive identification of many new target genes/fragments/regions that can specifically be used to identify species/strains, which have not been fully explored. This review focused on DNA markers useful for MTBC detection, species identification and antibiotic resistance determination. The use of DNA targets with new technological approaches will help to develop NAATs applicable to all levels of the health system, mainly in low resource areas, which urgently need customized methods to their specific conditions.
Biosurfactants are surface-active compounds produced by different microorganisms. The aim of this study was to introduce palm kernel cake (PKC) as a novel substrate for biosurfactant production using a potent bacterial strain under liquid state fermentation. This study was primarily based on the isolation and identification of biosurfactant-producing bacteria that could utilize palm kernel cake as a new major substrate. Potential bacterial strains were isolated from degraded PKC and screened for biosurfactant production with the help of the drop collapse assay and by analyzing the surface tension activity. From the screened isolates, a new strain, SM03, showed the best and most consistent results, and was therefore selected as the most potent biosurfactant-producing bacterial strain. The new strain was identified as Providencia alcalifaciens SM03 using the Gen III MicroPlate Biolog Microbial Identification System. The yield of the produced biosurfactant was 8.3 g/L.
Tuberculosis (TB) remains a public health problem in Malaysia. We describe three atypical cases of serious tuberculosis in children. The potential diagnostic pitfall in these cases is highlighted by its unusual presentation in a setting of culture-negative infection. A positive polymerase chain reaction (PCR) in each case assists in gauging the diagnosis in concordance with appropriate clinical findings.
This study was undertaken to optimize yeast extract, glucose, and vitamin concentrations; and also culture pH for maximizing the growth of a probiotic bacterium, Lactobacillus rhamnosus, and to assess the effects of these factors by using response surface methodology. A central composite design was used as an experimental design for the allocation of treatment combinations. A polynomial regression model with cubic and quartic terms was used for analysis of the experimental data. It was found that the effects involving yeast extract, glucose, vitamins and pH on the growth of L. rhamnosus were significant, and the strongest effect was given by the yeast extract concentration. Estimated optimum conditions of the factors for the growth of L. rhamnosus are as follows: pH=6.9; vitamin solution=1.28% (v/v); glucose=5.01% (w/v) and yeast extract=6.0% (w/v).
The effects of pH, temperature, phytate, glucose, phosphate and surfactants on the phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle, were evaluated.
Forty clinical isolates of Vibrio parahaemolyticus were studied for the production of the thermostable direct hemolysin (TDH), and the TDH-related hemolysin (TRH) including the respective encoding genes, tdh and trh. The presence of TDH and its encoding genes were found amongst 95% of the strains, whereas the TRH was absent amongst these isolates. Thirty-two isolates were found to be plasmid-free, whereas eight isolates possessed plasmids with sizes ranging from 2.4 > or = 23 kb. Using a DNA probe coding for the homologous region of the tdh and trh, it was found that the tdh genes were present on the chromosomal DNA.
The first case report of Yersinia enterocolitica infection in Malaysia is presented. The patient was a 34-year-old Indian woman who had a four day history of fever, abdominal pain and cough and loose stools for 2 days. She was diagnosed and treated as a case, initially of bacillary dysentery, and then of urban typhus. She responded to tetracycline therapy. Bacteriological examination eventually resulted in the isolation and identification of Yersinia enterocolitica, serotype 0:3. This case indicates the presence of the infection in Malaysia although the incidence is probably very low. This appears to be the situation in 'warm' countries.
Twelve Lactobacillus strains isolated from chicken intestine were used to investigate acid and bile tolerance in vitro. Ten out of the 12 strains were slightly affected by 0.3% bile salts, showing a delay of growth (d) of 0.6-37.2 min compared with growth in control cultures. Two strains were not affected by the bile salts. Of the 12 strains, seven could be arbitrarily classified as resistant (d < 15 min) and five as tolerant (15 min < d < or = 40 min). Lactobacillus strains from the caecum showed better tolerance to acid than those from the ileum. Generally, the survival of the ileal strains was very low at pH 1.0 and 2.0, and moderate at pH 3.0. In contrast, caecal Lactobacillus strains could survive at pH 1.0 for up to 2 h of incubation; growth was moderate at pH 2.0 and good at pH 3.0 and 4.0.
Leptospirosis is recognized as one of the important zoonotic diseases in the world including Malaysia. A total of 145 soil and water samples were collected from selected National Service Training Centres (NSTC) in Kelantan and Terengganu. The samples were inoculated into modified semisolid Ellinghausen McCullough Johnson Harris (EMJH) medium, incubated at room temperature for 1 month and examined under the dark-field microscope. Positive growth of the leptospiral isolates were then confirmed with 8-Azaguanine Test, Polymerase Chain Reaction (PCR) assay and Microscopic Agglutination Test (MAT). Fifteen cultures (10.34%) exhibited positive growths which were seen under dark field microscope whilst only 20% (3/15) were confirmed as pathogenic species. based on 8-Azaguanine Test and PCR. Serological identification of the isolates with MAT showed that hebdomadis was the dominant serovar in Terengganu. Pathogenic leptospires can be detected in Malaysian environment and this has the potential to cause an outbreak. Therefore, precautionary steps against leptospirosis should be taken by camp authorities to ensure the safety of trainees.
The dairy industry uses lipase extensively for hydrolysis of milk fat. Lipase is used in the modification of the fatty acid chain length, to enhance the flavours of various chesses. Therefore finding the unlimited source of lipase is a concern of dairy industry. Due to the importance of lipase, this study was an attempt to express the lipase from Burkholderia cepacia in Lactococcus lactis. To achieve this, a gene associated with lipase transport was amplified and subcloned in inducible pNZ8148 vector, and subsequently transformed into Lc. lactis NZ9000. The enzyme assay as well as SDS-PAGE and western blotting were carried out to analysis the recombinant lipase expression. Nucleotide sequencing of the DNA insert from the clone revealed that the lipase activity corresponded to an open reading frame consisting of 1092 bp coding for a 37·5-kDa size protein. Blue colour colonies on nile blue sulphate agar and sharp band on 37·5-kD size on SDS-PAGE and western blotting results confirm the successful expression of lipase by Lc. lactis. The protein assay also showed high expression, approximately 152·2 μg/ml.h, of lipase by recombinant Lc. lactis. The results indicate that Lc. lactis has high potential to overproduce the recombinant lipase which can be used commercially for industrially purposes.
The issues of lactose intolerance and vegetarianism have encouraged the introduction of non-dairy fermented food into the market. Therefore, this study aims to evaluate the effect of agitation speed on the bioactive compounds and functional characteristics of probioticated pomegranate juice. Pomegranate juice was fermented with Lactobacillus casei at different agitation speeds ranging from 0 (microaerophilic) to 150 rpm at 37 °C. The functional properties of probioticated pomegranate juice were evaluated in terms of growth (biomass), lactic acid production, antioxidant activity, total phenolic content, and key metabolites using LC-MS/MS. The growth kinetics of fermentation was monitored at the optimal condition using one factor at a time method. High cell growth (3.58 × 1010 cfu/mL or 7.9 gL-1) was observed for L. casei probioticated pomegranate juice agitated at 0 rpm. The findings of this study reveal the potential of pomegranate juice as a medium for L. casei cultivation without nutrient supplementation. The improvement of antioxidant activity in the probioticated juice could be due to the increment of quercetin-3-glucoside. Therefore, L. casei grew well in pomegranate juice with a high cell viability and antioxidant activity at a non-agitated condition. Probioticated pomegranate juice is a potentially functional drink.
In this study, PCR-RFLP analysis (PRA) targeting hsp65 and rpoB gene regions was evaluated for the identification of mycobacterial species isolated from Malaysian patients. Overall, the hsp65 PRA identified 92.2 % of 90 isolates compared to 85.6 % by the rpoB PRA. With 47 rapidly growing species, the hsp65 PRA identified fewer (89.4 %) species than the rpoB PRA (95.7 %), but with 23 slow-growing species the reverse was true (91.3 % identification by the hsp65 PRA but only 52.5 % by the rpoB PRA). There were 16 isolates with discordant PRA results, which were resolved by 16S rRNA and hsp65 gene sequence analysis. The findings in this study suggest that the hsp65 PRA is more useful than the rpoB PRA for the identification of Mycobacterium species, particularly with the slow-growing members of the genus. In addition, this study reports 5 and 12 novel restriction patterns for inclusion in the hsp65 and rpoB PRA algorithms, respectively.
Establishing a microbial diagnosis for patients with community-acquired pneumonia (CAP) is still challenging and is often achieved in only 30-50% of cases. Polymerase chain reaction (PCR) has been shown to be more sensitive than conventional microbiological methods and it could help to increase the microbial yield for CAP patients. This study was designed to develop, optimize and evaluate multiplex real-time PCR as a method for rapid differential detection of five bacterial causes of CAP namely Streptococcus pneumoniae, Burkholderia pseudomallei and atypical bacterial pathogens, Mycoplasma pneumoniae, Chlamydophila pneumoniae and Legionella pneumophila. Duplex and triplex real-time PCR assays were developed using five sets of primers and probes that were designed based on an appropriate specific gene for each of the above CAP pathogens. The performance of primers for each organism was tested using SYBR Green melt curve analysis following monoplex realtime PCR amplification. Monoplex real-time PCR assays were also used to optimize each primers-probe set before combining them in multiplex assays. Two multiplex real-time PCR assays were then optimized; duplex assay for the differential detection of S. pneumoniae and B. pseudomallei, and triplex assay for the atypical bacterial pathogens. Both duplex and triplex real-time PCR assays were tested for specificity by using DNA extracted from 26 related microorganisms and sensitivity by running serial dilutions of positive control DNAs. The developed multiplex real-time PCR assays shall be used later for directly identifying CAP causative agents in clinical samples.
Diarrheal diseases cause illness and death among children younger than 10 years in developing countries. Conventional testing for the detection of hemorrhagic bacteria takes 2 to 5 days to yield complete information on the organism and its antibiotic sensitivity pattern. Hence, in the present study, we developed a molecular-based diagnostic assay that identifies common hemorrhagic bacteria in stool samples. A set of specific primers were designed for the detection of Salmonella spp., Shigella spp., enterohemorrhagic Escherichia coli (EHEC), and Campylobacter spp., suitable for use in a one-tube PCR assay. The assay in the present study simultaneously detected five genes, namely, ompC for the Salmonella genus, virA for the Shigella genus, eaeA for EHEC, 16S rRNA for the Campylobacter genus, and hemA for an internal control. Specific primer pairs were successfully designed and simultaneously amplified the targeted genes. Validation with 20 Gram-negative and 17 Gram-positive strains yielded 100% specificity. The limit of detection of the multiplex PCR assay was 1 × 10(3) CFU at the bacterial cell level and 100 pg at the genomic DNA level. Further evaluation of the multiplex PCR with 223 bacterium-spiked stool specimens revealed 100% sensitivity and specificity. We conclude that the developed multiplex PCR assay was rapid, giving results within 4 h, which is essential for the identification of hemorrhagic bacteria, and it might be useful as an additional diagnostic tool whenever time is important in the diagnosis of hemorrhagic bacteria that cause diarrhea. In addition, the presence of an internal control in the multiplex PCR assay is important for excluding false-negative cases.
Delays in tuberculosis (TB) diagnosis, particularly in prisons, is associated with detrimental outcomes. The new GeneXpert MTB/RIF assay (Xpert) offers accurate and rapid diagnosis of active TB, but its performance in improving case detection in high-transmission congregate settings has yet to be evaluated. We assessed the diagnostic accuracy of a single Xpert assay in an intensified case finding survey among HIV-infected prisoners in Malaysia.
In order to achieve better treatment for local wounds and bacterial infections, topical formulations containing Cocos nucifera Linn. were developed. These formulations were evaluated for their physicochemical properties and antimicrobial efficacy against various strains of microorganisms. Semisolid formulations containing 5% w/w of Cocos nucifera Linn. were prepared by employing different dermatological bases and were evaluated for their physical appearance, pH, rheological properties, FTIR-spectroscopic analysis, thermodynamic stability and stability studies. The antimicrobial activity of each prepared formulation was determined using disk-diffusion method against various strains of microorganisms. All the prepared formulations were found to be stable and exhibited suitable physicochemical characteristics including pH, viscosity and spreadability which are necessary for an ideal topical preparation, in addition to strong antimicrobial activity. Carbopol gel base was found to be the most suitable dermatological base for Cocos nucifera Linn. in comparsion to other bases. Cocos nucifera Linn. formulations showed great potential for wounds and local bacterial infections. Moreover, carbopol gel base with its aesthetic appeal was found to be a suitable dermatological base for Cocos nucifera Linn. semisolid formulation as it had demonstrated significant physicochemical properties and greater diffusion when assessed using disk- diffusion method.
Abstract. Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is a pathogen recognized to be distinct in both phenotype and genotype from hospital-acquired MRSA. We have identified CA-MRSA cases in Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia, including their antibiotic susceptibility patterns and genotypic characteristics. Cases were identified during January to December 2009 from routine clinical specimens, where culture and antibiotic susceptibility results yielded pauci-resistant MRSA isolates suspected as being CA-MRSA. The patients' clinical data were collected and their specimens were sent for molecular confirmation and analysis. Five cases of CA-MRSA were identified, which had a multi-sensitive pattern on antibiotic susceptibility tests and were resistant to only penicillin and oxacillin. All cases were skin and soft-tissue infections, including diabetic foot with gangrene, infected scalp hematoma, philtrum abscess in a healthcare worker, thrombophlebitis complicated with abscess and infected bedsore. All five cases were confirmed MRSA by detection of mecA. SCCmec typing (ccr and mec complex) revealed SCCmec type IV for all cases except the infected bedsore case. Panton-Valentine leukocidin gene was positive in all isolates. As clinical features among methicillin-sensitive Staphylococcus aureus, CA-MRSA and "nosocomial CA-MRSA" are indistinct, early recognition is necessary in order to initiate appropriate antibiotics and infection control measures. Continual surveillance of pauci-resistant MRSA and molecular analysis are necessary in order to identify emerging strains as well as their epidemiology and transmission, both in the community and in healthcare setting.