Displaying publications 41 - 60 of 167 in total

Abstract:
Sort:
  1. Bokhari RA, Tantowi NACA, Lau SF, Mohamed S
    Inflammopharmacology, 2018 Aug;26(4):939-949.
    PMID: 29380171 DOI: 10.1007/s10787-017-0432-2
    The effect of Orthosiphon stamineus aqueous (OSA) extract against osteoarthritis (OA) was investigated in explant cartilage culture and in postmenopausal OA rat model. Female rats were bilaterally ovariectomized (OVX). Osteoarthritis was induced after surgical recovery, by intra-articular injection of monosodium iodoacetate (MIA) into the right knee. Rats were grouped (n = 8) into: healthy sham control; non-treated OA; OA + diclofenac (positive control 5 mg/kg); and two doses OSA (150-300 mg/kg). After 4 weeks' treatment, rats were evaluated for OA-related parameters and biomarkers. The OSA reduced proteoglycan and ROS release from the cartilage explants under inflammatory (IL-1b) conditions. In the OA-induced rats' cartilages, the OSA downregulated the mRNA expressions for IL-1β, IL-6, IL-10, TNF-α, NF-κβ, NOS2, PTGS2, PTGER2, ACAN, COL2A1, MMP1, MMP13, ADAMTS4, ADAMTS5 and TIMP1, mostly dose-dependently. The OSA reduced the OA rats' serum levels for PGE2, CTX-II, TNF-α, MMP1, MMP13, PIINP, OPG, RANKL, OC and BALP, but not dose-dependently. The OSA contained polyphenols and flavonoids (tetramethoxyflavone). The OSA alleviated articular cartilage degradation, inflammation, collagenase/aggrecanase activities, to improve joint and subchondral bone structure. O. stamineus mitigated osteoarthritis by downregulating inflammation, peptidases and aggrecanases, at a dose equivalent to about 30 mg/kg for humans.
    Matched MeSH terms: Cartilage, Articular/drug effects; Cartilage, Articular/pathology
  2. Razak KAA, Ghani KHA, Musa AA
    Injury, 2021 Jan;52(1):90-94.
    PMID: 33168201 DOI: 10.1016/j.injury.2020.11.004
    BACKGROUND: Acetabular fractures in childhood are rare and the literature is scarce to describe a standard protocol in surgical management of these injuries. As the patient is still growing, it warrants a detailed assessment with a sound surgical plan if operative intervention is deemed necessary to prevent late complications. Throughout literature, most fixation rely on using pins, screws, plates or combination of the three which require large surgical exposure and risk of secondary physeal injury, hence we come up with a method of using the Titanium Elastic Nail System (TENS) to overcome this issue. We describe a novel technique in managing acetabular fractures in this group of patients using the TENS.

    METHOD: An 8 year old girl with a diagnosis of right anterior column posterior hemitransverse acetabular fracture was fixed with 3 TENS for supra-acetabular, anterior column and posterior column fragments. Surgery was performed in a minimally invasive manner. No drilling was performed during the surgery and implant insertion is done manually.

    RESULTS: Advantages of this procedure include minimally invasive surgery with smaller wounds, minimal intraoperative bleeding and theoretically reduces the risk of premature fusion of the triradiate cartilage. Patient is allowed early rehabilitation with this method.

    CONCLUSION: This novel method provides an alternative to traditional usage of wires, pins, plates and screws as is described in most literature. However, it requires the surgeon to appreciate that the safe corridors for the implant are much narrower than adults. We recommend this technique for fractures that are deemed suitable for intramedullary fixation and further research in the future will be needed.

    Matched MeSH terms: Cartilage
  3. Samuel S, Ahmad RE, Ramasamy TS, Manan F, Kamarul T
    Injury, 2018 Apr;49(4):775-783.
    PMID: 29503013 DOI: 10.1016/j.injury.2018.02.020
    BACKGROUND: It has been previously suggested that the use of regenerative promoters, which include bone marrow-derived mesenchymal stem cells (MSCs) or natural growth factors supplement such as platelet-rich concentrate (PRC) could promote cartilage regeneration. However, the notion that the concurrent use of both promoters may provide a synergistic effect that improves the repair outcome of focal cartilage injury has not been previously demonstrated. This study was thus conducted to determine whether the concomitant use of PRC could further enhance the reparative potential of MSCs encapsulated in alginate transplanted into focal cartilage injury in rabbits.

    METHODS: Artifically created full thickness cartilage defects were made on the weight-bearing region of medial femoral condyles in bilateral knees of New Zealand White rabbits (N = 30). After one month, the right knee was treated with either i) PRC (n = 10), ii) MSCs (n = 10), or, iii) a combination of PRC and MSCs (PRC + MSC) (n = 10), all encapsulated in alginate. The left knee remained untreated (control). Rabbits were sacrificed at 3 and 6 months after treatment. Cartilage tissue regeneration was accessed using ICRS morphologic scoring, histologic grading by O'Driscoll scoring, immunohistochemical staining and quantitative analysis of glycosaminoglycans (GAG) per total protein content.

    RESULTS: At 3 months, transplantation using PRC alone was equally effective as MSCs in inducing the repair of cartilage defects. However, PRC + MSC resulted in significantly higher ICRS and O'Driscoll scores (p 

    Matched MeSH terms: Cartilage Diseases; Cartilage, Articular
  4. Zamzuri, Z., Adham, S.Y., Shukrimi, A., Azril, M.A., Amran, R.
    MyJurnal
    Clinically, it is sometimes diffi cult to distinguish an infection of the spine from a metastasis. Spinal tuberculosis is common according to its endemic region and adenocarcinoma of the lung is also rising in the incidence worldwide. Similar presentations, with unknown primary, clinical fi ndings and hematological investigations rarely conclude a true diagnosis. Radiologically, the hallmark of spinal infection is erosion of adjacent vertebral endplates and narrowing of the disc space with or without a paravertebral shadow. Metastasis typically does not involve the disc space with erosion of the adjacent vertebral endplates. It usually presents as a lytic/sclerotic lesion in the vertebral body or “winkle owl” sign. These distinguishing features of infection versus metastasis are not certainties. Biopsy is mandatory whenever in doubt or patient is not responded with provisional treatment. The author presents a case with so-called radiological features of spinal tuberculosis infection, which turns out to be a metastatic adenocarcinoma of the lung.
    Matched MeSH terms: Cartilage Diseases
  5. Siti Nazirah Yahya, Nurul Syafiqah Abdul Razak, Noraini Abu Bakar, Khairani Idah Mokhtar, Azrul Fazwan Kharuddin
    MyJurnal
    Evidence suggests that several genes; including MYO1H, play an important role in the
    etiology of Class III malocclusion. Single nucleotide polymorphism (SNP) in marker rs10850110 (locus
    12q24.11) within MYO1H gene has been associated with the incidence of mandibular prognathism
    (MP). MYO is a class 1 myosin that is responsible for the synthesis of Matrilin-1; an important
    protein involved in the formation of cartilage's extracellular matrix, hence is implicated in the
    formation of mandibular condyle cartilage. This study aimed to detect the presence of MYO1H
    (rs10850110) SNP and to determine its genotype and allele distribution in MP patient in the local
    population. (Copied from article).
    Matched MeSH terms: Cartilage
  6. Noorhidayah Md Nazir, Munirah Sha’ban
    MyJurnal
    This paper examines the safety and efficacy of non-viral gene transfer in cartilage tissue engineering (TE) from the worldview of Islam. The first clinical trial treating adenosine deaminase deficient patients conducted in 1990 has triggered the development of gene transfer technology. The potential of gene transfer is further explored in TE field with the hope that it could prosper the regenerative medicine application. However, ethical issues become important when it comes to application of new treatment modalities, primarily in gene transfer because of genetic modification influences the basis of life - the DNA. Besides ethical issue, the application of gene transfer in treating diseases also attract views from religious context. The questions on the techniques to administer the gene in human, social acceptance of genetically modified cell and adverse effects from it are still debatable and unresolved. Apart from that dilemma, both safety and efficacy issues are raised due to the scientific uncertainty and social perception of the technology. Despite countless number of encouraging findings and recommendations by the proponents of
    the technology, gene transfer is currently available only in the research setting. The established guidelines are used to complement and provide the necessary foundations in discussing the aspects involved in the incorporation of gene transfer with cartilage TE. Relevant Islamic input are identified and aligned to those particular guidelines. It is hoped that the integration of Islamic inputs in the existing guidelines could suggest the safest approach in treating cartilage degenerative disease through gene transfer and TE.
    Matched MeSH terms: Cartilage
  7. Jithendra P, Mohamed JMM, Annamalai D, Al-Serwi RH, Ibrahim AM, El-Sherbiny M, et al.
    Int J Biol Macromol, 2023 Sep 01;248:125948.
    PMID: 37482169 DOI: 10.1016/j.ijbiomac.2023.125948
    The chondrogenic efficacy of aloe vera blended collagen-chitosan (COL-CS-AV) porous scaffold was investigated using articular chondrocytes in a standard condition. Cytocompatibility was analyzed using fluorescent dyes (calcein AM/ethidium bromide) and the viable cells were quantified by MTT assay. Glycosaminoglycan (GAG) content of ECM was estimated by using 1, 9-Dimethyl methylene Blue (DMMB). The total RNA content was quantified and the cartilage specific genes (col2a1, Acan) were amplified by reverse transcription-PCR from the cell lysate of the scaffolds. Histological examination was made using Haematoxylin and Eosin (H&E), safranin-O, masson's trichrome, alcian blue, and alizarin red to stain the specific component of ECM secreted on the construct. The cartilage specific collagen type II was estimated by immunohistochemistry using monoclonal type II collagen antibody. The results of these studies proved that COL-CS-AV scaffold has more chondrogenic efficacy than COL-CS, thus the aloe vera blend COL-CS-AV scaffold might be used as suitable candidate for cartilage tissue engineering.
    Matched MeSH terms: Cartilage/metabolism
  8. Chin KY, Wong SK, Japar Sidik FZ, Abdul Hamid J, Abas NH, Mohd Ramli ES, et al.
    PMID: 31412648 DOI: 10.3390/ijerph16162897
    Osteoarthritis is a degenerative joint disease which primarily affects the articular cartilage and subchondral bones. Since there is an underlying localized inflammatory component in the pathogenesis of osteoarthritis, compounds like tocotrienol with anti-inflammatory properties may be able to retard its progression. This study aimed to determine the effects of oral tocotrienol supplementation on the articular cartilage and subchondral bone in a rat model of osteoarthritis induced by monosodium iodoacetate (MIA). Thirty male Sprague-Dawley rats (three-month-old) were randomized into five groups. Four groups were induced with osteoarthritis (single injection of MIA at week 0) and another served as the sham group. Three of the four groups with osteoarthritis were supplemented with annatto tocotrienol at 50, 100 and 150 mg/kg/day orally for five weeks. At week 5, all rats were sacrificed, and their tibial-femoral joints were harvested for analysis. The results indicated that the groups which received annatto tocotrienol at 100 and 150 mg/kg/day had lower histological scores and cartilage remodeling markers. Annatto tocotrienol at 150 mg/kg/day significantly lowered the osteocalcin levels and osteoclast surface of subchondral bone. In conclusion, annatto tocotrienol may potentially retard the progression of osteoarthritis. Future studies to confirm its mechanism of joint protection should be performed.
    Matched MeSH terms: Cartilage, Articular
  9. Naveen SV, Ahmad RE, Hui WJ, Suhaeb AM, Murali MR, Shanmugam R, et al.
    Int J Med Sci, 2014;11(1):97-105.
    PMID: 24396291 DOI: 10.7150/ijms.6964
    Monosodium -iodoacetate (MIA)-induced animal model of osteoarthritis (OA) is under-utilised despite having many inherent advantages. At present, there is lack of studies that directly compare the degenerative changes induced by MIA with the surgical osteoarthritis induction method and human osteoarthritis, which would further verify a greater use of this model. Therefore, we compared the histological, biochemical and biomechanical characteristics in rat model using MIA against the anterior cruciate ligament transection (ACLT) and human cartilage with clinically established osteoarthritis. The right knees of Sprague-Dawley rats were subjected to either MIA or ACLT (n=18 in each group). Six rats were used as controls. Human cartilage samples were collected and compared from patients clinically diagnosed with (n=7) and without osteoarthritis (n=3). Histological, biochemical (Glycosaminoglycans/total protein) and biomechanical (cartilage stiffness) evaluations were performed at the end of the 1(st) and 2(nd) week after OA induction. For human samples, evaluations were performed at the time of sampling. Histopathological changes in the MIA group were comparable to that observed in the ACLT group and human OA. The Mankin scores of the 3 groups were comparable (MIA: 11.5 ± 1.0; ACLT: 10.1 ± 1.1; human OA: 13.2 ± 0.8). Comparable reduction in Glycosaminoglycan/total protein content in the intervention groups were observed (MIA: 7 ± 0.6; ACLT: 6.6 ± 0.5; human OA: 3.1 ± 0.7). Cartilage stiffness score were 24.2 ± 15.3 Mpa for MIA, 25.3 ± 4.8 for ACLT and 0.5 ± 0.0 Mpa for human OA. The MIA model produces comparable degenerative changes to ACLT and human OA with the advantage of being rapid, minimally invasive and reproducible. Therefore, wider utilisation of MIA as animal translational OA model should perhaps be advocated.
    Matched MeSH terms: Cartilage, Articular/physiopathology*
  10. Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525349 DOI: 10.3390/ijms22031269
    Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient's quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
    Matched MeSH terms: Cartilage/metabolism; Cartilage/pathology
  11. Eremeev A, Pikina A, Ruchko Y, Bogomazova A
    Int J Mol Sci, 2023 Sep 22;24(19).
    PMID: 37833856 DOI: 10.3390/ijms241914408
    Inflammatory joint diseases, among which osteoarthritis and rheumatoid arthritis are the most common, are characterized by progressive degeneration of the cartilage tissue, resulting in the threat of limited or lost joint functionality in the absence of treatment. Currently, treating these diseases is difficult, and a number of existing treatment and prevention measures are not entirely effective and are complicated by the patients' conditions, the multifactorial nature of the pathology, and an incomplete understanding of the etiology. Cellular technologies based on induced pluripotent stem cells (iPSCs) can provide a vast cellular resource for the production of artificial cartilage tissue for replacement therapy and allow the possibility of a personalized approach. However, the question remains whether a number of etiological abnormalities associated with joint disease are transmitted from the source cell to iPSCs and their chondrocyte derivatives. Some data state that there is no difference between the iPSCs and their derivatives from healthy and sick donors; however, there are other data indicating a dissimilarity. Therefore, this topic requires a thorough study of the differentiation potential of iPSCs and the factors influencing it, the risk factors associated with joint diseases, and a comparative analysis of the characteristics of cells obtained from patients. Together with cultivation optimization methods, these measures can increase the efficiency of obtaining cell technology products and make their wide practical application possible.
    Matched MeSH terms: Cartilage, Articular*
  12. Ng CY, Chai JY, Foo JB, Mohamad Yahaya NH, Yang Y, Ng MH, et al.
    Int J Nanomedicine, 2021;16:6749-6781.
    PMID: 34621125 DOI: 10.2147/IJN.S327059
    Treatment of cartilage defects such as osteoarthritis (OA) and osteochondral defect (OCD) remains a huge clinical challenge in orthopedics. OA is one of the most common chronic health conditions and is mainly characterized by the degeneration of articular cartilage, shown in the limited capacity for intrinsic repair. OCD refers to the focal defects affecting cartilage and the underlying bone. The current OA and OCD management modalities focus on symptom control and on improving joint functionality and the patient's quality of life. Cell-based therapy has been evaluated for managing OA and OCD, and its chondroprotective efficacy is recognized mainly through paracrine action. Hence, there is growing interest in exploiting extracellular vesicles to induce cartilage regeneration. In this review, we explore the in vivo evidence of exosomes on cartilage regeneration. A total of 29 in vivo studies from the PubMed and Scopus databases were identified and analyzed. The studies reported promising results in terms of in vivo exosome delivery and uptake; improved cartilage morphological, histological, and biochemical outcomes; enhanced subchondral bone regeneration; and improved pain behavior following exosome treatment. In addition, exosome therapy is safe, as the included studies documented no significant complications. Modifying exosomal cargos further increased the cartilage and subchondral bone regeneration capacity of exosomes. We conclude that exosome administration is a potent cell-free therapy for alleviating OA and OCD. However, additional studies are needed to confirm the therapeutic potential of exosomes and to identify the standard protocol for exosome-based therapy in OA and OCD management.
    Matched MeSH terms: Cartilage, Articular*
  13. Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BH, et al.
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):835-40.
    PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021
    This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis.
    Matched MeSH terms: Ear Cartilage/metabolism; Ear Cartilage/pathology*
  14. Ruszymah BH, Chua KH, Mazlyzam AL, Aminuddin BS
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):805-10.
    PMID: 21481479 DOI: 10.1016/j.ijporl.2011.03.012
    Formation of external ear via tissue engineering has created interest amongst surgeons as an alternative for ear reconstruction in congenital microtia.
    Matched MeSH terms: Ear Cartilage*
  15. Ruszymah BH, Lokman BS, Asma A, Munirah S, Chua K, Mazlyzam AL, et al.
    Int J Pediatr Otorhinolaryngol, 2007 Aug;71(8):1225-34.
    PMID: 17531328
    This study was aimed at regenerating autologous elastic cartilage for future use in pediatric ear reconstruction surgery. Specific attentions were to characterize pediatric auricular chondrocyte growth in a combination culture medium and to assess the possibility of elastic cartilage regeneration using human fibrin.
    Matched MeSH terms: Elastic Cartilage/cytology*; Elastic Cartilage/drug effects; Elastic Cartilage/physiology*
  16. Ruszymah BH, Chua K, Latif MA, Hussein FN, Saim AB
    Int J Pediatr Otorhinolaryngol, 2005 Nov;69(11):1489-95.
    PMID: 15941595
    Treatment and management of congenital as well as post-traumatic trachea stenosis remains a challenge in pediatric surgery. The aim of this study was to reconstruct a trachea with human nasal septum chondrocytes by using the combination of biodegradable hydrogel and non-biodegradable high-density polyethylene (HDP) as the internal predetermined shape scaffold.
    Matched MeSH terms: Hyaline Cartilage/cytology*; Hyaline Cartilage/metabolism
  17. Ishak MF, See GB, Hui CK, Abdullah Ab, Saim Lb, Saim Ab, et al.
    Int J Pediatr Otorhinolaryngol, 2015 Oct;79(10):1634-9.
    PMID: 26250439 DOI: 10.1016/j.ijporl.2015.06.034
    This study aimed to isolate, culture-expand and characterize the chondrocytes isolated from microtic cartilage and evaluate its potential as a cell source for ear cartilage reconstruction. Specific attention was to construct the auricular cartilage tissue by using fibrin as scaffold.
    Matched MeSH terms: Ear Cartilage/cytology*; Ear Cartilage/metabolism
  18. Law JX, Liau LL, Aminuddin BS, Ruszymah BH
    Int J Pediatr Otorhinolaryngol, 2016 Dec;91:55-63.
    PMID: 27863642 DOI: 10.1016/j.ijporl.2016.10.012
    Tracheal replacement is performed after resection of a portion of the trachea that was impossible to reconnect via direct anastomosis. A tissue-engineered trachea is one of the available options that offer many advantages compared to other types of graft. Fabrication of a functional tissue-engineered trachea for grafting is very challenging, as it is a complex organ with important components, including cartilage, epithelium and vasculature. A number of studies have been reported on the preparation of a graftable trachea. A laterally rigid but longitudinally flexible hollow cylindrical scaffold which supports cartilage and epithelial tissue formation is the key element. The scaffold can be prepared via decellularization of an allograft or fabricated using biodegradable or non-biodegradable biomaterials. Commonly, the scaffold is seeded with chondrocytes and epithelial cells at the outer and luminal surfaces, respectively, to hasten tissue formation and improve functionality. To date, several clinical trials of tracheal replacement with tissue-engineered trachea have been performed. This article reviews the formation of cartilage tissue, epithelium and neovascularization of tissue-engineered trachea, together with the obstacles, possible solutions and future. Furthermore, the role of the bioreactor for in vitro tracheal graft formation and recently reported clinical applications of tracheal graft were also discussed. Generally, although encouraging results have been achieved, however, some obstacles remain to be resolved before the tissue-engineered trachea can be widely used in clinical settings.
    Matched MeSH terms: Cartilage/physiology*
  19. Samsudin EZ, Kamarul T
    JUMMEC, 2014;17(2):1-11.
    MyJurnal
    Autologous chondrocyte implantation (ACI) is a significant technique that has gained widespread use for the treatment of focal articular cartilage damage. Since its inception in 2004, the Tissue Engineering Group (TEG) of the Faculty of Medicine, University Malaya has been dedicated to carrying out extensive research on this cell-based therapy. The objective of this report, comprising one clinical case report, six animal studies and one laboratory study, is to summarise and discuss TEG’s key findings. On the whole, we observed that the ACI technique was effective in regenerating hyaline-like cartilage in treated defects. Autologous chondrocytes and mesenchymal stem cells (MSC) were found to produce comparable tissue repair irrespective of the state of MSC differentiation, and the use of alginate-based scaffolding and oral pharmacotherapy (Glucosamine and Chondroitin Sulphate) was shown to enhance ACI-led tissue repair. ACI is suggested to be an efficient therapeutic option for the treatment of articular cartilage defects of the knee.
    Matched MeSH terms: Cartilage, Articular; Hyaline Cartilage
  20. Tay, L.X.
    JUMMEC, 2015;18(1):1-8.
    MyJurnal
    Osteoarthritis (OA) affects millions of people worldwide with its irreversible destruction of articular cartilage. Recently, the potential of using chondrogenic differentiated multipotent mesenchymal stromal cells (cMSCs) for OA treatment is being assessed. Preliminary clinical studies have been encouraging. However current studies have also demonstrated that cMSCs are not biochemically and biomechanically identical to native articular chondrocytes (ACs). Thus, there is an urgent need for the implementation of proteomic applications as proteomics involve protein identification, relative quantification of proteins and studies of post-translational modification which reveal novel regulating processes of complex mechanisms such as in chondrogenesis. A comprehensive understanding of chondrogenesis is essential for the establishment of an effective cMSC model to regenerate cartilage. In this article, we will review current proteomic studies on chondrogenesis, focusing on recent findings and the proteomic approaches utilised.
    Matched MeSH terms: Cartilage, Articular
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links