Displaying publications 41 - 60 of 91 in total

Abstract:
Sort:
  1. Ho CL, Geisler M
    Plants (Basel), 2019 Oct 23;8(11).
    PMID: 31652796 DOI: 10.3390/plants8110441
    The interactions between transcription factors (TFs) and cis-acting regulatory elements (CREs) provide crucial information on the regulation of gene expression. The determination of TF-binding sites and CREs experimentally is costly and time intensive. An in silico identification and annotation of TFs, and the prediction of CREs from rice are made possible by the availability of whole genome sequence and transcriptome data. In this study, we tested the applicability of two algorithms developed for other model systems for the identification of biologically significant CREs of co-expressed genes from rice. CREs were identified from the DNA sequences located upstream from the transcription start sites, untranslated regions (UTRs), and introns, and downstream from the translational stop codons of co-expressed genes. The biologically significance of each CRE was determined by correlating their absence and presence in each gene with that gene's expression profile using a meta-database constructed from 50 rice microarray data sets. The reliability of these methods in the predictions of CREs and their corresponding TFs was supported by previous wet lab experimental data and a literature review. New CREs corresponding to abiotic stresses, biotic stresses, specific tissues, and developmental stages were identified from rice, revealing new pieces of information for future experimental testing. The effectiveness of some-but not all-CREs was found to be affected by copy number, position, and orientation. The corresponding TFs that were most likely correlated with each CRE were also identified. These findings not only contribute to the prioritization of candidates for further analysis, the information also contributes to the understanding of the gene regulatory network.
    Matched MeSH terms: Codon, Terminator
  2. Stremenova Spegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al.
    Blood, 2020 Aug 27;136(9):1055-1066.
    PMID: 32518946 DOI: 10.1182/blood.2020005844
    Molecular dissection of inborn errors of immunity can help to elucidate the nonredundant functions of individual genes. We studied 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin. All 3 showed early autologous T-cell reconstitution following allogeneic hematopoietic stem cell transplantation. By whole-exome sequencing, we identified rare homozygous germline missense or nonsense variants in a known epigenetic regulator of gene expression: ten-eleven translocation methylcytosine dioxygenase 2 (TET2). Mutated TET2 protein was absent or enzymatically defective for 5-hydroxymethylating activity, resulting in whole-blood DNA hypermethylation. Circulating T cells showed an abnormal immunophenotype including expanded double-negative, but depleted follicular helper, T-cell compartments and impaired Fas-dependent apoptosis in 2 of 3 patients. Moreover, TET2-deficient B cells showed defective class-switch recombination. The hematopoietic potential of patient-derived induced pluripotent stem cells was skewed toward the myeloid lineage. These are the first reported cases of autosomal-recessive germline TET2 deficiency in humans, causing clinically significant immunodeficiency and an autoimmune lymphoproliferative syndrome with marked predisposition to lymphoma. This disease phenotype demonstrates the broad role of TET2 within the human immune system.
    Matched MeSH terms: Codon, Nonsense
  3. Ariffin H, Geikowski A, Chin TF, Chau D, Arshad A, Abu Bakar K, et al.
    Med J Malaysia, 2014 Aug;69(4):193-4.
    PMID: 25500851 MyJurnal
    We report a case of Griscelli Syndrome (GS). Our patient initially presented with a diagnosis of haemophagocytic lymphistiocytosis (HLH). Subsequent microscopic analysis of the patient's hair follicle revealed abnormal distribution of melanosomes in the shaft, which is a hallmark for GS. Analysis of RAB27A gene in this patient revealed a homozygous mutation in exon 6, c.550C>T, p.R184X . This nonsense mutation causes premature truncation of the protein resulting in a dysfunctional RAB27A. Recognition of GS allows appropriate institution of therapy namely chemotherapy for HLH and curative haemotopoeitic stem cell transplantation.
    Matched MeSH terms: Codon, Nonsense
  4. Shmukler BE, Kedar PS, Warang P, Desai M, Madkaikar M, Ghosh K, et al.
    Am J Hematol, 2010 Oct;85(10):824-8.
    PMID: 20799361 DOI: 10.1002/ajh.21836
    Familial distal renal tubular acidosis (dRTA) can be caused by mutations in the Cl2/HCO32 exchanger of the renal Type A intercalated cell, kidney AE1/SLC4A1. dRTA-associated AE1 mutations have been reported in families from North America, Europe, Thailand, Malaysia, Papua-New Guinea, Taiwan, and the Philippines, but not India. The dRTA mutation AE1 A858D has been detected only in the context of compound heterozygosity. We report here two unrelated Indian patients with combined hemolytic anemia and dRTA who share homozygous A858D mutations of the AE1/SLC4A1 gene. The mutation creates a novel restriction site that is validated for diagnostic screening.
    Matched MeSH terms: Codon/genetics
  5. Cheek, Ken Lim, So, Har Ton
    Medicine & Health, 2007;2(1):1-25.
    MyJurnal
    Infection by hepatitis B virus (HBV) is a major global health-care problem. HBV is an accepted factor in the elevated risks for liver disease such as cirrhosis and development of hepatocellular carcinoma. This problem is particularly prevalent in the Asia-Pacific region which includes Malaysia. During infection, the hepatitis B e antigen (HBeAg) is produced in the hosts. This antigen is an important serological marker for diagnosing chronic hepatitis B. Seroconversion to anti-body (anti-HBe) corresponds to the improvement of disease prognosis. However, certain mutations such as the core promoter dual mutations (A1762G1764→T1762A1764), the codon 15 variants (C1858/ T1858) and the precore stop codon mutations (TGG→TAG) can affect the HBeAg expression. This has diagnostic and clinical implications. Besides that, the HBV can be grouped into eight genotypes (A to H). Moreover, genotypic subtypes and recombinants have been observed as well. Studies have observed that these can differ in their affiliations with the mutations above as well as with disease prognosis.
    Matched MeSH terms: Codon, Terminator
  6. Mohd-Zin SW, Abdullah NL, Abdullah A, Greene ND, Cheah PS, Ling KH, et al.
    Genome, 2016 Jul;59(7):439-48.
    PMID: 27373307 DOI: 10.1139/gen-2015-0142
    The EphA4 receptor tyrosine kinase is involved in numerous cell-signalling activities during embryonic development. EphA4 has the ability to bind to both types of ephrin ligands, the ephrinAs and ephrinBs. The C57BL/6J-Epha4rb-2J/GrsrJ strain, denoted Epha4(rb-2J/rb-2J), is a spontaneous mouse mutant that arose at The Jackson Laboratory. These mutants exhibited a synchronous hind limb locomotion defect or "hopping gait" phenotype, which is also characteristic of EphA4 null mice. Genetic complementation experiments suggested that Epha4(rb-2J) corresponds to an allele of EphA4, but details of the genomic defect in this mouse mutant are currently unavailable. We found a single base-pair deletion in exon 9 resulting in a frame shift mutation that subsequently resulted in a premature stop codon. Analysis of the predicted structure of the truncated protein suggests that both the kinase and sterile α motif (SAM) domains are absent. Definitive determination of genotype is needed for experimental studies of mice carrying the Epha4(rb-2J) allele, and we have also developed a method to ease detection of the mutation through RFLP. Eph-ephrin family members are reportedly expressed as numerous isoforms. Hence, delineation of the specific mutation in EphA4 in this strain is important for further functional studies, such as protein-protein interactions, immunostaining and gene compensatory studies, investigating the mechanism underlying the effects of altered function of Eph family of receptor tyrosine kinases on phenotype.
    Matched MeSH terms: Codon, Terminator
  7. Ch'ng GS, An SS, Bae SO, Bagyinszky E, Kim S
    Neuropsychiatr Dis Treat, 2015;11:2315-22.
    PMID: 26396515 DOI: 10.2147/NDT.S86334
    Alzheimer's disease (AD) is the most common form of dementia, which can be categorized into two main forms: early onset AD and late onset AD. The genetic background of early onset AD is well understood, and three genes, the APP, PSEN1, and PSEN2 have been identified as causative genes. In the current study, we tested three siblings from Malaysia who were diagnosed with early onset dementia, as well as their available family members. The family history was positive as their deceased father was similarly affected. Patients were tested for mutations in APP, PSEN1, PSEN2, and PRNP. A novel variant, E280K, was discovered in exon 8 of PSEN1 in the three siblings. In silico analyses with SIFT, SNAP, and PolyPhen2 prediction tools and three-dimensional modeling were performed, and the results suggested that the mutation is probably a pathogenic variant. Two additional pathogenic mutations were previously been described for codon 280, E280A, and E280G, which could support the importance of the E280 residue in the PS1 protein contributing to the pathogenic nature of E280K. Additional ten family members were screened for the E280K mutation, and all of them were negative. Six of them presented with a variety of neuropsychiatric symptoms, including learning disabilities, epilepsy, and schizophrenia, while four family members were asymptomatic. A novel PRNP G127S mutation was found in a step-niece of the three siblings harboring the PSEN1 E280K mutation. In silico predictions for PRNP G127S mutation suggested that this might be possibly a damaging variant. Additional studies to characterize PRNP G127S would be necessary to further understand the effects of this mutation.
    Matched MeSH terms: Codon
  8. Chan MK, Othman R, Zubir D, Salmijah S
    PMID: 11879780
    The relationship between a putative metallothionein gene (MT) and exposure to cadmium (Cd) in blood cockles (Anadara granosa) is reported. In a 96-h dose-response experiment, mortality of cockles was found to proportionately increase in the range of 0.2-5.0 mg/l Cd with a calculated LC(50) of 2.94 mg/l. Exposure to 0.25 mg/l Cd for 16 days caused significant increases (P<0.05) in Cd concentrations in whole tissues, gills and hepatopancreas, and the accumulation of Cd in these tissues increased with the duration of exposure. Two cDNA libraries constructed using the hepatopancreas from control and Cd-treated cockles gave titres of 5.62 x 10(5) and 1.94 x 10(5) pfu/microg vector, respectively. A putative MT gene, AnaMT, of 510 nucleotides in length, was isolated from the treated cDNA library using a heterologous probe MT20 from the blue mussel, Mytilus edulis. Northern analyses using AnaMT as a probe indicated low expression of the MT mRNA in control animals. In cockles treated with 0.25 mg/l Cd for 4 days, MT mRNA level increased to approximately 168%, but declined to 108% at day 8. After 12 and 16 days of Cd treatment, expression of the MT gene was 138% and 187%, respectively, compared to the controls. These observations suggest that induction of the MT gene by a sublethal dose of Cd is rapid, occurring within 4 days of treatment.
    Matched MeSH terms: Codon
  9. Norlelawati AT, Rusmawati I, Naznin M, Nur Nadia O, Rizqan Aizzani R, Noraziana AW
    Med J Malaysia, 2014 Feb;69(1):27-30.
    PMID: 24814625 MyJurnal
    OBJECTIVE: Inherited anti-thrombin deficiency is an autosomal dominant disorder which is associated with increased risk for venous thromboembolism (VTE). This condition is very rare in Malaysia and there has been no documented report. Thus, the aim of the present study is to investigate the type of an inherited anti-thrombin deficiency mutation in a 25-year-old Malay woman who presented with deep vein thrombosis in her first pregnancy.

    METHODS: DNA was extracted from the patient's blood sample and buccal mucosal swabs from family members. Polymerase chain reaction(PCR) assays were designed to cover all seven exons of the serpin peptidase inhibitor, clade C (antithrombin), member 1 (SERPINC1) gene; and the products were subjected to DNA sequencing. Sequences were referred to NCBI Reference Sequence: NG_012462.1.

    RESULTS: A heterozygous substitution mutation at nucleotide position 13267 (CCT->ACT) was identified in the patient and two other family members, giving a possible change of codon 439 (Pro→Thr) also known as anti-thrombin Budapest 5. The genotype was absent in 90 healthy controls.

    CONCLUSION: The study revealed a heterozygous antithrombin Budapest 5 mutation in SERPINC 1 giving rise to a possible anti-thrombin deficiency in a Malay-Malaysian family.
    Matched MeSH terms: Codon
  10. Tan JA, Tan KL, Omar KZ, Chan LL, Wee YC, George E
    Eur J Pediatr, 2009 Sep;168(9):1049-54.
    PMID: 19034506 DOI: 10.1007/s00431-008-0877-9
    INTRODUCTION: Interactions of different hemoglobin variants with thalassemia alleles can result in various clinical phenotypes. HbE-beta-thalassemia generally manifests with severe anemia where individuals exhibit beta-thalassemia major with regular blood transfusions or beta-thalassemia intermedia with periodic blood transfusions. This study presents a unique Malay family with three beta-globin gene defects-HbE, Hb South Florida, and IVS1-1 (G-->A).

    MATERIALS AND METHODS: HbE activates a cryptic splice site that produces non-functional mRNAs. Hb South Florida is a rare beta-hemoglobin variant, and its interactions with other beta-thalassemia alleles have not been reported. IVS1-1 is a Mediterranean mutation that affects mRNA processing giving rise to beta(o)-thalassemia.

    RESULTS AND DISCUSSION: Fifteen mutations along the beta-globin gene complex were analyzed using the amplification refractory mutation system. Hb South Florida was identified by direct sequencing using genomic DNA.

    CONCLUSION: The affected child with HbE/IVS1-1 produced a beta-thalassemia major phenotype. Compound heterozygosity for Hb South Florida/IVS1-1 produced a beta-thalassemia carrier phenotype in the mother.

    Matched MeSH terms: Codon/genetics*
  11. Zangeneh FZ, Shoushtari MS, Shojaee S, Aboutorabi E
    Int J Reprod Biomed, 2020 Mar;18(3):165-174.
    PMID: 32309765 DOI: 10.18502/ijrm.v18i3.6712
    Background: Polycystic ovary syndrome (PCOS) is a multifactorial and heterogeneous disease that has a potent inheritable component based on familial clustering. Despite many studies in the genetic field of PCOS, the genes that are involved in the causes of this syndrome have not been thoroughly investigated.

    Objective: The purpose of this study was to establish the occurrence of the Trp64Arg polymorphism of beta3 adrenergic receptor in non-obese women with PCOS.

    Materials and Methods: This cross-sectional study was performed on 100 women with PCOS and normal women as the control group in Imam Khomeini Hospital of Tehran in 2016-2017. Peripheral blood sample (2 cc) was obtained from two groups for genomic DNA based on the gene bank. Polymorphisms were genotyped by of using ADRB3 Trp64Arg. Then the DNA was extracted by genomic kiagen kit. The primer was analyzed for PCR based on gene bank by using Primer3 software and then confirmed by primer Blast tool at NCBI site to conformity to the beta-3 adrenergic receptor gene. The protein changes were assessment by the Clastal W software.

    Results: The sequence analysis presented in NCBI, transcript variant 1, with the code NM_000025.2, shows changes in the amino acid sequence of exon 1 in women with PCOS. Polymorphism in the codon 64 encoding the amino acid tryptophan (W) occurred in the nucleotide c.T190C, which changed the nucleotide T to C and then the amino acid sequence of the tryptophan was altered to arginine pW64R.

    Conclusion: T-C polymorphism is evident in the codon 64 of the adrenergic β3 receptor in patients with PCOS. Therefore, Beta3 adrenergic receptor gene polymorphism (Thr164Ile) associates with this syndrome in nonobese women.

    Matched MeSH terms: Codon
  12. Koh PK, Loi C, Cao X, Cheah PY, Ho KS, Ooi BS, et al.
    Dis Colon Rectum, 2007 Jan;50(1):75-82.
    PMID: 17082890 DOI: 10.1007/s10350-006-0759-z
    PURPOSE:
    This study examined the mutational profile of the adenomatous polyposis coli gene in relation to the development of desmoid tumors in familial adenomatous polyposis patients from a predominantly Chinese population.

    METHODS:
    This is a retrospective review of all patients with familial adenomatous polyposis coli from the Singapore Polyposis Registry. Identification of specific adenomatous polyposis coli gene mutation was performed and clinical course of associated desmoid disease obtained from case records and a computerized database.

    RESULTS:
    Two hundred five patients from 75 families afflicted with familial adenomatous polyposis coli were reviewed, with gene mutations identified in 107 patients. Of these, 23 (11.2 percent) developed desmoids. The male-to-female ratio was 1:1.3 and the ethnic distribution was Chinese (n=17) and Malay (n=6). Of the 92 patients with mutations 5' to codon 1444, 11 patients (12 percent) developed desmoids compared with 6 of 15 (40 percent) patients with adenomatous polyposis coli gene mutations 3' to codon 1444 (P<0.01). The clinical course of desmoid tumors can be divided into stable (n=11), variable (n=3), progressive (n=6), and aggressive growth (n=3). Only 3 (13 percent) patients with aggressive tumor growth required chemotherapy. There was no correlation between the site of mutation and the clinical progression of the desmoids. Seventy-four percent of these desmoids (17/23) developed at a mean interval of 2.98 years after restorative proctocolectomy, while only 30 percent (7/23) were diagnosed preoperatively or discovered during the initial surgery. The most common complications related to the mesenteric desmoids were intestinal obstruction (21.7 percent), ureteric obstruction (17.4 percent), and encasement of superior mesenteric vessels (13 percent).

    CONCLUSION:
    The clinical course of desmoids in an individual familial adenomatous polyposis patient remains unpredictable and no reliable genetic marker is available for prognostication in desmoid disease.
    Matched MeSH terms: Codon
  13. Mohamed Yusoff AA, Zulfakhar FN, Mohd Khair SZN, Wan Abdullah WS, Abdullah JM, Idris Z
    Brain Tumor Res Treat, 2018 Apr;6(1):31-38.
    PMID: 29717568 DOI: 10.14791/btrt.2018.6.e5
    BACKGROUND: Mitochondria are major cellular sources of reactive oxygen species (ROS) generation which can induce mitochondrial DNA damage and lead to carcinogenesis. The mitochondrial 10398A>G alteration in NADH-dehydrogenase subunit 3 (ND3) can severely impair complex I, a key component of ROS production in the mitochondrial electron transport chain. Alteration in ND3 10398A>G has been reported to be linked with diverse neurodegenerative disorders and cancers. The aim of this study was to find out the association of mitochondrial ND3 10398A>G alteration in brain tumor of Malaysian patients.

    METHODS: Brain tumor tissues and corresponding blood specimens were obtained from 45 patients. The ND3 10398A>G alteration at target codon 114 was detected using the PCR-RFLP analysis and later was confirmed by DNA sequencing.

    RESULTS: Twenty-six (57.8%) patients showed ND3 10398A>G mutation in their tumor specimens, in which 26.9% of these mutations were heterozygous mutations. ND3 10398A>G mutation was not significantly correlated with age, gender, and histological tumor grade, however was found more frequently in intra-axial than in extra-axial tumors (62.5% vs. 46.2%, p<0.01).

    CONCLUSION: For the first time, we have been able to describe the occurrence of ND3 10398A>G mutations in a Malaysian brain tumor population. It can be concluded that mitochondrial ND3 10398A>G alteration is frequently present in brain tumors among Malaysian population and it shows an impact on the intra-axial tumors.

    Matched MeSH terms: Codon
  14. Sze-Looi Song, Kar-Hoe Loh, Phaik-Eem Lim, Amy Yee-Hui Then, Hoi-Sen Yong, Praphathip Eamsobhana
    Sains Malaysiana, 2018;47:2519-2531.
    Gymnothorax minor is a moray eel of the family Muraenidae found in the Western Pacific Ocean. We report here
    its complete mitogenome as determined by Illumina next-generation sequencing and the phylogenetic relationship
    with its congeners and other taxa of the family Muraenidae. The whole mitogenome of G. minor had a total length
    of 16,574 bp, comprising 37 genes - 13 protein-coding genes (PCGs), two ribosomal ribonucleic acid (rRNA) and 22
    transfer ribonucleic acid (tRNA) genes - and a control region. Excepting cox1 with GTG, the other 12 PCGs had ATG
    start codon. Seven of its PCGs had incomplete stop codon - five (nad2; cox1; cox2; nad3 and nad4) with T and two
    (atp6 and cox3) with TA. Molecular phylogeny based on 13 PCGs was concordant with 15 mitochondrial genes (13 PCGs
    and 2 rRNA genes). The subfamily Muraeninae as well as the subfamily Uropterygiinae were monophyletic. However,
    the genus Gymnothorax was paraphyletic, with G. minor forming a sister group with Rhinomuraena quaesita in the
    lineage containing also G. kidako and G. formosus forming a sister group with Enchelynassa canina. The phylogenetic
    relationship of the genus Gymnothorax and related taxa of the family Muraenidae, based on the mitochondrial cob
    gene, was in general similar to that based on 15 mt-genes. The mitogenome is useful for future studies on phylogenetics
    and systematics of eels of the family Muraenidae and other taxa of the order Anguilliformes.
    Matched MeSH terms: Codon, Initiator; Codon, Terminator
  15. Furuumi H, Firdous N, Inoue T, Ohta H, Winichagoon P, Fucharoen S, et al.
    Hemoglobin, 1998 Mar;22(2):141-51.
    PMID: 9576331
    We have systematically analyzed beta-thalassemia genes using polymerase chain reaction-related techniques, dot-blot hybridization with oligonucleotide probes, allele specific-polymerase chain reaction, and sequencing of amplified DNA fragments from 41 unrelated patients, including 37 beta-thalassemia homozygotes, three with beta-thalassemia/Hb E, and one with beta-thalassemia/Hb S. Four different beta-thalassemia mutations were detected in 78 alleles. These are the IVS-I-5 (G-->C), codon 30 (AGG-->ACG) [also indicated as IVS-I (-1)], IVS-I-1 (G-->A), and codons 41/42 (-TTCT) mutations. The distribution of the beta-thalassemia mutations in the Maldives is 58 alleles (74.3%) with the IVS-I-5 (G-->C) mutation, 12 (15.4%) with the codon 30 (AGG-->ACG) mutation, seven (9%) with the IVS-I-1 (G-->A) mutation, and one with the codons 41/42 (-TTCT) mutation. The first three mutations account for 98.7% of the total number of beta-thalassemia chromosomes studied. These mutations are clustered in the region spanning 6 bp around the junction of exon 1 and the first intervening sequence of the beta-globin gene. These observations have significant implications for setting up a thalassemia prevention and control program in the Maldives. Analysis of haplotypes and frameworks of chromosomes bearing each beta-thalassemia mutation suggested that the origin and spread of these mutations were reflected by the historical record.
    Matched MeSH terms: Codon/genetics
  16. Yang KG, Kutlar F, George E, Wilson JB, Kutlar A, Stoming TA, et al.
    Br J Haematol, 1989 May;72(1):73-80.
    PMID: 2736244
    This study concerned the identification of the beta-thalassaemia mutations that were present in 27 Malay patients with Hb E-beta-thalassaemia and seven Malay patients with thalassaemia major who were from West Malaysia. Nearly 50% of all beta-thalassaemia chromosomes carried the G----C substitution at nucleotide 5 of IVS-I; the commonly occurring Chinese anomalies such as the frameshift at codons 41 and 42, the nonsense mutation A----T at codon 17, the A----G substitution at position -28 of the promoter region, and the C----T substitution at position 654 of the second intron, were rare or absent. Two new thalassaemia mutations were discovered. The first involves a frameshift at codon 35 (-C) that was found in two patients with Hb E-beta zero-thalassaemia and causes a beta zero-thalassaemia because a stop codon is present at codon 60. The second is an AAC----AGC mutation in codon 19 that was present on six chromosomes. This substitution results in the production of an abnormal beta chain (beta-Malay) that has an Asn----Ser substitution at position beta 19. Hb Malay is a 'Hb Knossos-like' beta +-thalassaemia abnormality; the A----G mutation at codon 19 likely creates an alternate splicing site between codons 17 and 18, reducing the efficiency of the normal donor splice site at IVS-I to about 60%.
    Matched MeSH terms: Codon
  17. Baharin MF, Kader Ibrahim SB, Yap SH, Abdul Manaf AM, Mat Ripen A, Dhaliwal JS
    Malays J Pathol, 2015 Aug;37(2):153-8.
    PMID: 26277674 MyJurnal
    The Wiskott-Aldrich Syndrome (WAS) is an X-linked immunodeficiency condition characterized by microthrombocytopenia, eczema and recurrent infections. It is caused by mutations in the Wiskott-Aldrich Syndrome protein (WASP) gene. We investigated two Malay boys who presented with congenital thrombocytopenia, eczema and recurrent infections. Here we report two cases of WASP mutation in Malaysia from two unrelated families. One had a novel missense mutation in exon 1 while the other had a nonsense mutation in exon 2. Both patients succumbed to diseaserelated complications. A differential diagnosis of WAS should be considered in any male child who present with early onset thrombocytopenia, especially when this is associated with eczema and recurrent infections.
    Matched MeSH terms: Codon, Nonsense
  18. Gan HM, Tan MH, Lee YP, Schultz MB, Horwitz P, Burnham Q, et al.
    Mol Phylogenet Evol, 2018 01;118:88-98.
    PMID: 28966124 DOI: 10.1016/j.ympev.2017.09.022
    To further understand the evolutionary history and mitogenomic features of Australia's highly distinctive freshwater crayfish fauna, we utilized a recently described rapid mitogenome sequencing pipeline to generate 24 new crayfish mitogenomes including a diversity of burrowing crayfish species and the first for Astacopsis gouldi, the world's largest freshwater invertebrate. Whole mitogenome-based phylogeny estimates using both Bayesian and Maximum Likelihood methods substantially strengthen existing hypotheses for systematic relationships among Australian freshwater crayfish with evidence of pervasive diversifying selection and accelerated mitochondrial substitution rate among the members of the clade representing strongly burrowing crayfish that may reflect selection pressures for increased energy requirement for adaptation to terrestrial environment and a burrowing lifestyle. Further, gene rearrangements are prevalent in the burrowing crayfish mitogenomes involving both tRNA and protein coding genes. In addition, duplicated control regions were observed in two closely related Engaeus species, together with evidence for concerted evolution. This study significantly adds to the understanding of Australian freshwater crayfish evolutionary relationships and suggests a link between mitogenome evolution and adaptation to terrestrial environments and a burrowing lifestyle in freshwater crayfish.
    Matched MeSH terms: Codon
  19. Cheronie Shely Stanis, Myo Thura Zaw, Zainal Arifin Mustapha, Nor Amalina Emran, Richard Avoi, Jiloris Frederick Dony, et al.
    MyJurnal
    Introduction: Tuberculosis (TB) still remains a public health problem worldwide and the emergence of drug resistant TB (DR-TB) has worsened the situation as it is difficult and expensive to treat. The characterization of the genetic mutations underlying streptomycin resistance may be helpful in developing rapid detection methods which may guide clinicians in making therapeutic decisions. The aim of this study is to detect mutations causing streptomycin (STR) resistance in Mycobacterium tuberculosis isolates from Sabah. Methods: Susceptibility testing was carried out in MGIT system for 42 Mycobacterium tuberculosis clinical isolates. The drug resistant isolates were subject to whole genome sequencing and in-silico analysis was performed to detect the mutations in the sequence of the rpsL gene known to confer resistance to anti-tuberculous drugs. Results: Of the 42 positive isolates, 27 (64.3%) are shown to be susceptible towards first line drugs (FLDs) while 15 (35.7%) isolates were mono- and multiple resistant to the FLDs. Our findings reveal that the isolate 145 possess mutations at codon 43 within rpsL gene with amino acid change A to G (K43R). Conclusion: Findings from this study enable us to expand our knowledge of mutations causing drug resistance in Mycobacterium tuberculosis and the point mutations, which can be used as the potential marker for detection of drug resistant isolates.
    Matched MeSH terms: Codon
  20. Zaw MT, Emran NA, Lin Z
    J Infect Public Health, 2018 04 26;11(5):605-610.
    PMID: 29706316 DOI: 10.1016/j.jiph.2018.04.005
    BACKGROUND: Rifampicin (RIF) plays a pivotal role in the treatment of tuberculosis due to its bactericidal effects. Because the action of RIF is on rpoB gene encoding RNA polymerase β subunit, 95% of RIF resistant mutations are present in rpoB gene. The majority of the mutations in rpoB gene are found within an 81bp RIF-resistance determining region (RRDR).

    METHODOLOGY: Literatures on RIF resistant mutations published between 2010 and 2016 were thoroughly reviewed.

    RESULTS: The most commonly mutated codons in RRDR of rpoB gene are 531, 526 and 516. The possibilities of absence of mutation in RRDR of rpoB gene in MDR-TB isolates in few studies was due to existence of other rare rpoB mutations outside RRDR or different mechanism of rifampicin resistance.

    CONCLUSION: Molecular methods which can identify extensive mutations associated with multiple anti-tuberculous drugs are in urgent need so that the research on drug resistant mutations should be extended.

    Matched MeSH terms: Codon
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links