Displaying publications 41 - 60 of 89 in total

Abstract:
Sort:
  1. Mat-Isa NA, Mashor MY, Othman NH
    Artif Intell Med, 2008 Jan;42(1):1-11.
    PMID: 17996432
    This paper proposes to develop an automated diagnostic system for cervical pre-cancerous. METHODS AND DATA SAMPLES: The proposed automated diagnostic system consists of two parts; an automatic feature extraction and an intelligent diagnostic. In the automatic feature extraction, the system automatically extracts four cervical cells features (i.e. nucleus size, nucleus grey level, cytoplasm size and cytoplasm grey level). A new features extraction algorithm called region-growing-based features extraction (RGBFE) is proposed to extract the cervical cells features. The extracted features will then be fed as input data to the intelligent diagnostic part. A new artificial neural network (ANN) architecture called hierarchical hybrid multilayered perceptron (H(2)MLP) network is proposed to predict the cervical pre-cancerous stage into three classes, namely normal, low grade intra-epithelial squamous lesion (LSIL) and high grade intra-epithelial squamous lesion (HSIL). We empirically assess the capability of the proposed diagnostic system using 550 reported cases (211 normal cases, 143 LSIL cases and 196 HSIL cases).
    Matched MeSH terms: Diagnosis, Computer-Assisted/instrumentation*
  2. Javed F, Venkatachalam PA, Hani AF
    J Med Eng Technol, 2007 Sep-Oct;31(5):341-50.
    PMID: 17701779 DOI: 10.1080/03091900600887876
    Cardiovascular disease (CVD) is the leading cause of death worldwide, and due to the lack of early detection techniques, the incidence of CVD is increasing day by day. In order to address this limitation, a knowledge based system with embedded intelligent heart sound analyser (KBHSA) has been developed to diagnose cardiovascular disorders at early stages. The system analyses digitized heart sounds that are recorded from an electronic stethoscope using advanced digital signal processing and artificial intelligence techniques. KBHSA takes into account data including the patient's personal and past medical history, clinical examination, auscultation findings, chest x-ray and echocardiogram, and provides a list of diseases that it has diagnosed. The system can assist the general physician in making more accurate and reliable diagnosis under emergency conditions where expert cardiologists and advanced equipment are not readily available. To test the validity of the system, abnormal heart sound samples and medical data from 40 patients were recorded and analysed. The diagnoses made by the system were counter checked by four senior cardiologists in Malaysia. The results show that the findings of KBHSA coincide with those of cardiologists.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  3. Logeswaran R, Eswaran C
    Comput Biol Med, 2007 Aug;37(8):1084-91.
    PMID: 17112496
    Stones in the biliary tract are routinely identified using MRCP (magnetic resonance cholangiopancreatography). The noisy nature of the images, as well as varying intensity, size and location of the stones, defeat most automatic detection algorithms, making computer-aided diagnosis difficult. This paper proposes a multi-stage segment-based scheme for semi-automated detection of choledocholithiasis and cholelithiasis in the MRCP images, producing good performance in tests, differentiating them from "normal" MRCP images. With the high success rate of over 90%, refinement of the scheme could be applicable in the clinical environment as a tool in aiding diagnosis, with possible applications in telemedicine.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  4. Vidya KS, Ng EY, Acharya UR, Chou SM, Tan RS, Ghista DN
    Comput Biol Med, 2015 Jul;62:86-93.
    PMID: 25912990 DOI: 10.1016/j.compbiomed.2015.03.033
    Myocardial Infarction (MI) or acute MI (AMI) is one of the leading causes of death worldwide. Precise and timely identification of MI and extent of muscle damage helps in early treatment and reduction in the time taken for further tests. MI diagnosis using 2D echocardiography is prone to inter-/intra-observer variability in the assessment. Therefore, a computerised scheme based on image processing and artificial intelligent techniques can reduce the workload of clinicians and improve the diagnosis accuracy. A Computer-Aided Diagnosis (CAD) of infarcted and normal ultrasound images will be useful for clinicians. In this study, the performance of CAD approach using Discrete Wavelet Transform (DWT), second order statistics calculated from Gray-Level Co-Occurrence Matrix (GLCM) and Higher-Order Spectra (HOS) texture descriptors are compared. The proposed system is validated using 400 MI and 400 normal ultrasound images, obtained from 80 patients with MI and 80 normal subjects. The extracted features are ranked based on t-value and fed to the Support Vector Machine (SVM) classifier to obtain the best performance using minimum number of features. The features extracted from DWT coefficients obtained an accuracy of 99.5%, sensitivity of 99.75% and specificity of 99.25%; GLCM have achieved an accuracy of 85.75%, sensitivity of 90.25% and specificity of 81.25%; and HOS obtained an accuracy of 93.0%, sensitivity of 94.75% and specificity of 91.25%. Among the three techniques presented DWT yielded the highest classification accuracy. Thus, the proposed CAD approach may be used as a complementary tool to assist cardiologists in making a more accurate diagnosis for the presence of MI.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  5. Abidi SS
    PMID: 10724989
    The 21st century promises to usher in an era of Internet based healthcare services--Tele-Healthcare. Such services augur well with the on-going paradigm shift in healthcare delivery patterns, i.e. patient centred services as opposed to provider centred services and wellness maintenance as opposed to illness management. This paper presents a Tele-Healthcare info-structure TIDE--an 'intelligent' wellness-oriented healthcare delivery environment. TIDE incorporates two WWW-based healthcare systems: (1) AIMS (Automated Health Monitoring System) for wellness maintenance and (2) IDEAS (Illness Diagnostic & Advisory System) for illness management. Our proposal comes from an attempt to rethink the sources of possible leverage in improving healthcare; vis-à-vis the provision of a continuum of personalised home-based healthcare services that emphasise the role of the individual in self health maintenance.
    Matched MeSH terms: Diagnosis, Computer-Assisted*
  6. Lim CK, Yew KM, Ng KH, Abdullah BJ
    Australas Phys Eng Sci Med, 2002 Sep;25(3):144-50.
    PMID: 12416592 DOI: 10.1007/BF03178776
    Development of computer-based medical inference systems is always confronted with some difficulties. In this paper, difficulties of designing an inference system for the diagnosis of arthritic diseases are described, including variations of disease manifestations under various situations and conditions. Furthermore, the need for a huge knowledge base would result in low efficiency of the inference system. We proposed a hierarchical model of the fuzzy inference system as a possible solution. With such a model, the diagnostic process is divided into two levels. The first level of the diagnosis reduces the scope of diagnosis to be processed by the second level. This will reduce the amount of input and mapping for the whole diagnostic process. Fuzzy relational theory is the core of this system and it is used in both levels to improve the accuracy.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  7. Liam CK
    Med J Malaysia, 1996 Mar;51(1):82-8.
    PMID: 10967984
    The gold standard for the diagnosis and evaluation of sleep apnoea is overnight polysomnography. However, full polysomnography is an expensive and labour intensive procedure which requires the patient to sleep overnight in a hospital sleep laboratory. This paper describes the use of a commercial ambulatory microprocessor based system (Edentrace II) for the evaluation of fifteen patients aged 24 to 68 years with clinical features suggestive of sleep apnoea syndrome. With this portable recording system, sleep studies can be carried out unattended in a hospital ward and computer-assisted scoring of respiratory events can be performed.
    Study site: Chest clinic, wards, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Diagnosis, Computer-Assisted*
  8. Wong KK, Ng KH, Nah SH, Yusof K, Rajeswari K
    Asia Oceania J Obstet Gynaecol, 1994 Mar;20(1):19-23.
    PMID: 8172522
    The general lack of specialist obstetricians in a developing country such as Malaysia prompted us to develop a computer expert system for the management of fetal distress in rural hospitals. It was based on accepted production rules and implemented on a microcomputer. The clinical prototype was evaluated by 8 specialist obstetricians and 21 non-specialist doctors involved in obstetric care. The initial impression was that this type of expert system may help in diagnosis, decision-making and teaching.
    Matched MeSH terms: Diagnosis, Computer-Assisted*
  9. Acharya UR, Fernandes SL, WeiKoh JE, Ciaccio EJ, Fabell MKM, Tanik UJ, et al.
    J Med Syst, 2019 Aug 09;43(9):302.
    PMID: 31396722 DOI: 10.1007/s10916-019-1428-9
    The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student's t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer's diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  10. Abdar M, Książek W, Acharya UR, Tan RS, Makarenkov V, Pławiak P
    Comput Methods Programs Biomed, 2019 Oct;179:104992.
    PMID: 31443858 DOI: 10.1016/j.cmpb.2019.104992
    BACKGROUND AND OBJECTIVE: Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients.

    METHODS: We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features.

    RESULTS: The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field.

    CONCLUSIONS: We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use.

    Matched MeSH terms: Diagnosis, Computer-Assisted/statistics & numerical data
  11. Sheikh Abdullah SN, Bohani FA, Nayef BH, Sahran S, Al Akash O, Iqbal Hussain R, et al.
    Comput Math Methods Med, 2016;2016:8603609.
    PMID: 27516807 DOI: 10.1155/2016/8603609
    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  12. Yousef Kalafi E, Tan WB, Town C, Dhillon SK
    BMC Bioinformatics, 2016 Dec 22;17(Suppl 19):511.
    PMID: 28155722 DOI: 10.1186/s12859-016-1376-z
    BACKGROUND: Monogeneans are flatworms (Platyhelminthes) that are primarily found on gills and skin of fishes. Monogenean parasites have attachment appendages at their haptoral regions that help them to move about the body surface and feed on skin and gill debris. Haptoral attachment organs consist of sclerotized hard parts such as hooks, anchors and marginal hooks. Monogenean species are differentiated based on their haptoral bars, anchors, marginal hooks, reproductive parts' (male and female copulatory organs) morphological characters and soft anatomical parts. The complex structure of these diagnostic organs and also their overlapping in microscopic digital images are impediments for developing fully automated identification system for monogeneans (LNCS 7666:256-263, 2012), (ISDA; 457-462, 2011), (J Zoolog Syst Evol Res 52(2): 95-99. 2013;). In this study images of hard parts of the haptoral organs such as bars and anchors are used to develop a fully automated identification technique for monogenean species identification by implementing image processing techniques and machine learning methods.

    RESULT: Images of four monogenean species namely Sinodiplectanotrema malayanus, Trianchoratus pahangensis, Metahaliotrema mizellei and Metahaliotrema sp. (undescribed) were used to develop an automated technique for identification. K-nearest neighbour (KNN) was applied to classify the monogenean specimens based on the extracted features. 50% of the dataset was used for training and the other 50% was used as testing for system evaluation. Our approach demonstrated overall classification accuracy of 90%. In this study Leave One Out (LOO) cross validation is used for validation of our system and the accuracy is 91.25%.

    CONCLUSIONS: The methods presented in this study facilitate fast and accurate fully automated classification of monogeneans at the species level. In future studies more classes will be included in the model, the time to capture the monogenean images will be reduced and improvements in extraction and selection of features will be implemented.

    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  13. Jalalian A, Mashohor S, Mahmud R, Karasfi B, Iqbal Saripan M, Ramli AR
    J Digit Imaging, 2017 Dec;30(6):796-811.
    PMID: 28429195 DOI: 10.1007/s10278-017-9958-5
    Computed tomography laser mammography (Eid et al. Egyp J Radiol Nucl Med, 37(1): p. 633-643, 1) is a non-invasive imaging modality for breast cancer diagnosis, which is time-consuming and challenging for the radiologist to interpret the images. Some issues have increased the missed diagnosis of radiologists in visual manner assessment in CTLM images, such as technical reasons which are related to imaging quality and human error due to the structural complexity in appearance. The purpose of this study is to develop a computer-aided diagnosis framework to enhance the performance of radiologist in the interpretation of CTLM images. The proposed CAD system contains three main stages including segmentation of volume of interest (VOI), feature extraction and classification. A 3D Fuzzy segmentation technique has been implemented to extract the VOI. The shape and texture of angiogenesis in CTLM images are significant characteristics to differentiate malignancy or benign lesions. The 3D compactness features and 3D Grey Level Co-occurrence matrix (GLCM) have been extracted from VOIs. Multilayer perceptron neural network (MLPNN) pattern recognition has developed for classification of the normal and abnormal lesion in CTLM images. The performance of the proposed CAD system has been measured with different metrics including accuracy, sensitivity, and specificity and area under receiver operative characteristics (AROC), which are 95.2, 92.4, 98.1, and 0.98%, respectively.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  14. Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR
    Comput Methods Programs Biomed, 2018 Jul;161:1-13.
    PMID: 29852952 DOI: 10.1016/j.cmpb.2018.04.005
    BACKGROUND AND OBJECTIVE: We have cast the net into the ocean of knowledge to retrieve the latest scientific research on deep learning methods for physiological signals. We found 53 research papers on this topic, published from 01.01.2008 to 31.12.2017.

    METHODS: An initial bibliometric analysis shows that the reviewed papers focused on Electromyogram(EMG), Electroencephalogram(EEG), Electrocardiogram(ECG), and Electrooculogram(EOG). These four categories were used to structure the subsequent content review.

    RESULTS: During the content review, we understood that deep learning performs better for big and varied datasets than classic analysis and machine classification methods. Deep learning algorithms try to develop the model by using all the available input.

    CONCLUSIONS: This review paper depicts the application of various deep learning algorithms used till recently, but in future it will be used for more healthcare areas to improve the quality of diagnosis.

    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  15. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP
    Comput Methods Programs Biomed, 2018 Jul;161:103-113.
    PMID: 29852953 DOI: 10.1016/j.cmpb.2018.04.012
    In recent years, advanced neurocomputing and machine learning techniques have been used for Electroencephalogram (EEG)-based diagnosis of various neurological disorders. In this paper, a novel computer model is presented for EEG-based screening of depression using a deep neural network machine learning approach, known as Convolutional Neural Network (CNN). The proposed technique does not require a semi-manually-selected set of features to be fed into a classifier for classification. It learns automatically and adaptively from the input EEG signals to differentiate EEGs obtained from depressive and normal subjects. The model was tested using EEGs obtained from 15 normal and 15 depressed patients. The algorithm attained accuracies of 93.5% and 96.0% using EEG signals from the left and right hemisphere, respectively. It was discovered in this research that the EEG signals from the right hemisphere are more distinctive in depression than those from the left hemisphere. This discovery is consistent with recent research and revelation that the depression is associated with a hyperactive right hemisphere. An exciting extension of this research would be diagnosis of different stages and severity of depression and development of a Depression Severity Index (DSI).
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  16. Hagiwara Y, Koh JEW, Tan JH, Bhandary SV, Laude A, Ciaccio EJ, et al.
    Comput Methods Programs Biomed, 2018 Oct;165:1-12.
    PMID: 30337064 DOI: 10.1016/j.cmpb.2018.07.012
    BACKGROUND AND OBJECTIVES: Glaucoma is an eye condition which leads to permanent blindness when the disease progresses to an advanced stage. It occurs due to inappropriate intraocular pressure within the eye, resulting in damage to the optic nerve. Glaucoma does not exhibit any symptoms in its nascent stage and thus, it is important to diagnose early to prevent blindness. Fundus photography is widely used by ophthalmologists to assist in diagnosis of glaucoma and is cost-effective.

    METHODS: The morphological features of the disc that is characteristic of glaucoma are clearly seen in the fundus images. However, manual inspection of the acquired fundus images may be prone to inter-observer variation. Therefore, a computer-aided detection (CAD) system is proposed to make an accurate, reliable and fast diagnosis of glaucoma based on the optic nerve features of fundus imaging. In this paper, we reviewed existing techniques to automatically diagnose glaucoma.

    RESULTS: The use of CAD is very effective in the diagnosis of glaucoma and can assist the clinicians to alleviate their workload significantly. We have also discussed the advantages of employing state-of-art techniques, including deep learning (DL), when developing the automated system. The DL methods are effective in glaucoma diagnosis.

    CONCLUSIONS: Novel DL algorithms with big data availability are required to develop a reliable CAD system. Such techniques can be employed to diagnose other eye diseases accurately.

    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  17. Ibrahim RW, Hasan AM, Jalab HA
    Comput Methods Programs Biomed, 2018 Sep;163:21-28.
    PMID: 30119853 DOI: 10.1016/j.cmpb.2018.05.031
    BACKGROUND AND OBJECTIVES: The MRI brain tumors segmentation is challenging due to variations in terms of size, shape, location and features' intensity of the tumor. Active contour has been applied in MRI scan image segmentation due to its ability to produce regions with boundaries. The main difficulty that encounters the active contour segmentation is the boundary tracking which is controlled by minimization of energy function for segmentation. Hence, this study proposes a novel fractional Wright function (FWF) as a minimization of energy technique to improve the performance of active contour without edge method.

    METHOD: In this study, we implement FWF as an energy minimization function to replace the standard gradient-descent method as minimization function in Chan-Vese segmentation technique. The proposed FWF is used to find the boundaries of an object by controlling the inside and outside values of the contour. In this study, the objective evaluation is used to distinguish the differences between the processed segmented images and ground truth using a set of statistical parameters; true positive, true negative, false positive, and false negative.

    RESULTS: The FWF as a minimization of energy was successfully implemented on BRATS 2013 image dataset. The achieved overall average sensitivity score of the brain tumors segmentation was 94.8 ± 4.7%.

    CONCLUSIONS: The results demonstrate that the proposed FWF method minimized the energy function more than the gradient-decent method that was used in the original three-dimensional active contour without edge (3DACWE) method.

    Matched MeSH terms: Diagnosis, Computer-Assisted/methods
  18. Abdar M, Wijayaningrum VN, Hussain S, Alizadehsani R, Plawiak P, Acharya UR, et al.
    J Med Syst, 2019 Jun 07;43(7):220.
    PMID: 31175462 DOI: 10.1007/s10916-019-1343-0
    Wart disease (WD) is a skin illness on the human body which is caused by the human papillomavirus (HPV). This study mainly concentrates on common and plantar warts. There are various treatment methods for this disease, including the popular immunotherapy and cryotherapy methods. Manual evaluation of the WD treatment response is challenging. Furthermore, traditional machine learning methods are not robust enough in WD classification as they cannot deal effectively with small number of attributes. This study proposes a new evolutionary-based computer-aided diagnosis (CAD) system using machine learning to classify the WD treatment response. The main architecture of our CAD system is based on the combination of improved adaptive particle swarm optimization (IAPSO) algorithm and artificial immune recognition system (AIRS). The cross-validation protocol was applied to test our machine learning-based classification system, including five different partition protocols (K2, K3, K4, K5 and K10). Our database consisted of 180 records taken from immunotherapy and cryotherapy databases. The best results were obtained using the K10 protocol that provided the precision, recall, F-measure and accuracy values of 0.8908, 0.8943, 0.8916 and 90%, respectively. Our IAPSO system showed the reliability of 98.68%. It was implemented in Java, while integrated development environment (IDE) was implemented using NetBeans. Our encouraging results suggest that the proposed IAPSO-AIRS system can be employed for the WD management in clinical environment.
    Matched MeSH terms: Diagnosis, Computer-Assisted*
  19. Alizadehsani R, Abdar M, Roshanzamir M, Khosravi A, Kebria PM, Khozeimeh F, et al.
    Comput Biol Med, 2019 08;111:103346.
    PMID: 31288140 DOI: 10.1016/j.compbiomed.2019.103346
    Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and often leads to a heart attack. It annually causes millions of deaths and billions of dollars in financial losses worldwide. Angiography, which is invasive and risky, is the standard procedure for diagnosing CAD. Alternatively, machine learning (ML) techniques have been widely used in the literature as fast, affordable, and noninvasive approaches for CAD detection. The results that have been published on ML-based CAD diagnosis differ substantially in terms of the analyzed datasets, sample sizes, features, location of data collection, performance metrics, and applied ML techniques. Due to these fundamental differences, achievements in the literature cannot be generalized. This paper conducts a comprehensive and multifaceted review of all relevant studies that were published between 1992 and 2019 for ML-based CAD diagnosis. The impacts of various factors, such as dataset characteristics (geographical location, sample size, features, and the stenosis of each coronary artery) and applied ML techniques (feature selection, performance metrics, and method) are investigated in detail. Finally, the important challenges and shortcomings of ML-based CAD diagnosis are discussed.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
  20. Raghavendra U, Gudigar A, Maithri M, Gertych A, Meiburger KM, Yeong CH, et al.
    Comput Biol Med, 2018 04 01;95:55-62.
    PMID: 29455080 DOI: 10.1016/j.compbiomed.2018.02.002
    Ultrasound imaging is one of the most common visualizing tools used by radiologists to identify the location of thyroid nodules. However, visual assessment of nodules is difficult and often affected by inter- and intra-observer variabilities. Thus, a computer-aided diagnosis (CAD) system can be helpful to cross-verify the severity of nodules. This paper proposes a new CAD system to characterize thyroid nodules using optimized multi-level elongated quinary patterns. In this study, higher order spectral (HOS) entropy features extracted from these patterns appropriately distinguished benign and malignant nodules under particle swarm optimization (PSO) and support vector machine (SVM) frameworks. Our CAD algorithm achieved a maximum accuracy of 97.71% and 97.01% in private and public datasets respectively. The evaluation of this CAD system on both private and public datasets confirmed its effectiveness as a secondary tool in assisting radiological findings.
    Matched MeSH terms: Diagnosis, Computer-Assisted/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links