Displaying publications 41 - 55 of 55 in total

Abstract:
Sort:
  1. Teh BT, Lim K, Yong CH, Ng CCY, Rao SR, Rajasegaran V, et al.
    Nat Genet, 2017 Nov;49(11):1633-1641.
    PMID: 28991254 DOI: 10.1038/ng.3972
    Durian (Durio zibethinus) is a Southeast Asian tropical plant known for its hefty, spine-covered fruit and sulfury and onion-like odor. Here we present a draft genome assembly of D. zibethinus, representing the third plant genus in the Malvales order and first in the Helicteroideae subfamily to be sequenced. Single-molecule sequencing and chromosome contact maps enabled assembly of the highly heterozygous durian genome at chromosome-scale resolution. Transcriptomic analysis showed upregulation of sulfur-, ethylene-, and lipid-related pathways in durian fruits. We observed paleopolyploidization events shared by durian and cotton and durian-specific gene expansions in MGL (methionine γ-lyase), associated with production of volatile sulfur compounds (VSCs). MGL and the ethylene-related gene ACS (aminocyclopropane-1-carboxylic acid synthase) were upregulated in fruits concomitantly with their downstream metabolites (VSCs and ethylene), suggesting a potential association between ethylene biosynthesis and methionine regeneration via the Yang cycle. The durian genome provides a resource for tropical fruit biology and agronomy.
    Matched MeSH terms: Genome, Plant*
  2. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    C. R. Biol., 2015 Feb;338(2):83-94.
    PMID: 25553855 DOI: 10.1016/j.crvi.2014.11.003
    Backcross breeding is the most commonly used method for incorporating a blast resistance gene into a rice cultivar. Linkage between the resistance gene and undesirable units can persist for many generations of backcrossing. Marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and accelerates recurrent parent genome (RPG) recovery. The MABC approach was employed to incorporate (a) blast resistance gene(s) from the donor parent Pongsu Seribu 1, the blast-resistant local variety in Malaysia, into the genetic background of MR219, a popular high-yielding rice variety that is blast susceptible, to develop a blast-resistant MR219 improved variety. In this perspective, the recurrent parent genome recovery was analyzed in early generations of backcrossing using simple sequence repeat (SSR) markers. Out of 375 SSR markers, 70 markers were found polymorphic between the parents, and these markers were used to evaluate the plants in subsequent generations. Background analysis revealed that the extent of RPG recovery ranged from 75.40% to 91.3% and from 80.40% to 96.70% in BC1F1 and BC2F1 generations, respectively. In this study, the recurrent parent genome content in the selected BC2F2 lines ranged from 92.7% to 97.7%. The average proportion of the recurrent parent in the selected improved line was 95.98%. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in backcross generations. The application of MAS with the MABC breeding program accelerated the recovery of the RP genome, reducing the number of generations and the time for incorporating resistance against rice blast.
    Matched MeSH terms: Genome, Plant
  3. Ting NC, Jansen J, Mayes S, Massawe F, Sambanthamurthi R, Ooi LC, et al.
    BMC Genomics, 2014;15:309.
    PMID: 24767304 DOI: 10.1186/1471-2164-15-309
    Oil palm is an important perennial oil crop with an extremely long selection cycle of 10 to 12 years. As such, any tool that speeds up its genetic improvement process, such as marker-assisted breeding is invaluable. Previously, genetic linkage maps based on AFLP, RFLP and SSR markers were developed and QTLs for fatty acid composition and yield components identified. High density genetic maps of crosses of different genetic backgrounds are indispensable tools for investigating oil palm genetics. They are also useful for comparative mapping analyses to identify markers closely linked to traits of interest.
    Matched MeSH terms: Genome, Plant
  4. Nejat N, Rookes J, Mantri NL, Cahill DM
    Crit Rev Biotechnol, 2017 Mar;37(2):229-237.
    PMID: 26796880 DOI: 10.3109/07388551.2015.1134437
    Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.
    Matched MeSH terms: Genome, Plant
  5. Teo CH, Tan SH, Othman YR, Schwarzacher T
    J. Biochem. Mol. Biol. Biophys., 2002 Jun;6(3):193-201.
    PMID: 12186754
    Ty1-copia-like retrotransposons have been identified and investigated in several plant species. Here, the internal region of the reverse transcriptase (RT) gene of Ty1-copia-like retrotransposons was amplified by PCR from total genomic DNA of 10 varieties of banana. Two to four clones from each variety were sequenced. Extreme heterogeneity in the sequences of Ty1-copia-like retrotransposons from all the varieties was revealed following sequence analysis of the reverse transcriptase (RT) fragments. The size of the individual RT gene fragments varied between 213 and 309 bp. Southern blots of genomic DNA digested from Musa acuminata and other banana varieties probed with W8 clone from M. acuminata and A4 clone from Pisang Abu Nipah showed similar strong, multiple restriction fragments together with other faint hybridization band patterns with variable intensities indicating the presence of many copies of the Ty1-copia-like retrotransposons in the genomes. There was no correlation between retroelement sequence and the banana species (with A or B genomes) from which it arose, suggesting that the probes are not useful for tracking genomes through breeding populations.
    Matched MeSH terms: Genome, Plant
  6. Zhang L, Cenci A, Rouard M, Zhang D, Wang Y, Tang W, et al.
    Sci Rep, 2019 06 03;9(1):8199.
    PMID: 31160634 DOI: 10.1038/s41598-019-44637-x
    Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cubense, especially by tropical race 4 (Foc TR4), is threatening the global banana industry. Musa acuminata Pahang, a wild diploid banana that displays strong resistance to Foc TR4, holds great potential to understand the underlying resistance mechanisms. Microscopic examination reports that, in a wounding inoculation system, the Foc TR4 infection processes in roots of Pahang (resistant) and a triploid cultivar Brazilian (susceptible) were similar by 7 days post inoculation (dpi), but significant differences were observed in corms of both genotypes at 14 dpi. We compare transcriptomic responses in the corms of Pahang and Brazilian, and show that Pahang exhibited constitutive defense responses before Foc TR4 infection and inducible defense responses prior to Brazilian at the initial Foc TR4 infection stage. Most key enzymatic genes in the phenylalanine metabolism pathway were up-regulated in Brazilian, suggesting that lignin and phytotoxin may be triggered during later stages of Foc TR4 infection. This study unravels a few potential resistance candidate genes whose expression patterns were assessed by RT-qPCR assay and improves our understanding the defense mechanisms of Pahang response to Foc TR4.
    Matched MeSH terms: Genome, Plant
  7. Sarpan N, Taranenko E, Ooi SE, Low EL, Espinoza A, Tatarinova TV, et al.
    Plant Cell Rep, 2020 Sep;39(9):1219-1233.
    PMID: 32591850 DOI: 10.1007/s00299-020-02561-9
    KEY MESSAGE: Several hypomethylated sites within the Karma region of EgDEF1 and hotspot regions in chromosomes 1, 2, 3, and 5 may be associated with mantling. One of the main challenges faced by the oil palm industry is fruit abnormalities, such as the "mantled" phenotype that can lead to reduced yields. This clonal abnormality is an epigenetic phenomenon and has been linked to the hypomethylation of a transposable element within the EgDEF1 gene. To understand the epigenome changes in clones, methylomes of clonal oil palms were compared to methylomes of seedling-derived oil palms. Whole-genome bisulfite sequencing data from seedlings, normal, and mantled clones were analyzed to determine and compare the context-specific DNA methylomes. In seedlings, coding and regulatory regions are generally hypomethylated while introns and repeats are extensively methylated. Genes with a low number of guanines and cytosines in the third position of codons (GC3-poor genes) were increasingly methylated towards their 3' region, while GC3-rich genes remain demethylated, similar to patterns in other eukaryotic species. Predicted promoter regions were generally hypomethylated in seedlings. In clones, CG, CHG, and CHH methylation levels generally decreased in functionally important regions, such as promoters, 5' UTRs, and coding regions. Although random regions were found to be hypomethylated in clonal genomes, hypomethylation of certain hotspot regions may be associated with the clonal mantling phenotype. Our findings, therefore, suggest other hypomethylated CHG sites within the Karma of EgDEF1 and hypomethylated hotspot regions in chromosomes 1, 2, 3 and 5, are associated with mantling.
    Matched MeSH terms: Genome, Plant
  8. Cui Y, Song BK, Li LF, Li YL, Huang Z, Caicedo AL, et al.
    G3 (Bethesda), 2016 Dec 07;6(12):4105-4114.
    PMID: 27729434 DOI: 10.1534/g3.116.035881
    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy rice, a multiple-origin model has been proposed based on neutral markers and analyses of domestication genes for hull color and seed shattering. Here, we examined variation in pericarp (bran) color and its molecular basis to address how this trait evolved in Malaysian weeds and its possible role in weed adaptation. Functional alleles of the Rc gene confer proanthocyanidin pigmentation of the pericarp, a trait found in most wild and weedy Oryzas and associated with seed dormancy; nonfunctional rc alleles were strongly favored during rice domestication, and most cultivated varieties have nonpigmented pericarps. Phenotypic characterizations of 52 Malaysian weeds revealed that most strains are characterized by the pigmented pericarp; however, some weeds have white pericarps, suggesting close relationships to cultivated rice. Phylogenetic analyses indicate that the Rc haplotypes present in Malaysian weeds likely have at least three distinct origins: wild O. rufipogon, white-pericarp cultivated rice, and red-pericarp cultivated rice. These diverse origins contribute to high Rc nucleotide diversity in the Malaysian weeds. Comparison of Rc allelic distributions with other rice domestication genes suggests that functional Rc alleles may confer particular fitness benefits in weedy rice populations, for example, by conferring seed dormancy. This may promote functional Rc introgression from local wild Oryza populations.
    Matched MeSH terms: Genome, Plant
  9. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    J Sci Food Agric, 2017 Jul;97(9):2810-2818.
    PMID: 27778337 DOI: 10.1002/jsfa.8109
    BACKGROUND: The rice cultivar MR219 is famous for its better yield and long and fine grain quality; however, it is susceptible to blast disease. The main objective of this study was to introgress blast resistance genes into MR219 through marker-assisted selection (MAS). The rice cultivar MR219 was used as the recurrent parent, and Pongsu Seribu 1 was used as the donor.

    RESULTS: Marker-assisted foreground selection was performed using RM6836 and RM8225 to identify plants possessing blast resistance genes. Seventy microsatellite markers were used to estimate recurrent parent genome (RPG) recovery. Our analysis led to the development of 13 improved blast resistant lines with Piz, Pi2 and Pi9 broad-spectrum blast resistance genes and an MR219 genetic background. The RPG recovery of the selected improved lines was up to 97.70% with an average value of 95.98%. Selected improved lines showed a resistance response against the most virulent blast pathogen pathotype, P7.2. The selected improved lines did not express any negative effect on agronomic traits in comparison with MR219.

    CONCLUSION: The research findings of this study will be a conducive approach for the application of different molecular techniques that may result in accelerating the development of new disease-resistant rice varieties, which in turn will match rising demand and food security worldwide. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Genome, Plant
  10. Muniandy K, Tan MH, Shehnaz S, Song BK, Ayub Q, Rahman S
    Planta, 2020 Feb 01;251(2):57.
    PMID: 32008119 DOI: 10.1007/s00425-020-03349-7
    MAIN CONCLUSION: The rice leaf mitochondrial DNA is  more methylated compared to the rice grain mitochondrial DNA. The old rice leaf mitochondrial DNA has also a higher methylation level than the young rice leaf mitochondrial DNA. The presence of DNA methylation in rice organelles has not been well characterized. We have previously shown that cytosine methylation of chloroplast DNA is different between leaf and grain, and varies between young and old leaves in rice. However, the variation in cytosine methylation of mitochondrial DNA is still poorly characterized. In this study, we have investigated cytosine methylation of mitochondrial DNA in the rice grain and leaf. Based on CpG, CHG, and CHH methylation analyses, the leaf mitochondrial DNA was found to be  more methylated compared to the grain mitochondrial DNA. The methylation of the leaf mitochondrial DNA was also higher in old compared to young leaves. Differences in methylation were observed at different cytosine positions of the mitochondrial DNA between grain and leaf, although there were also positions with a similar level of high methylation in all the tissues examined. The differentially methylated cytosine positions in rice mitochondrial DNA were observed mostly in the intergenic region and in some mitochondrial-specific genes involved in ATP production, transcription, and translation. The functional importance of cytosine methylation in the life cycle of rice mitochondria is still to be determined.
    Matched MeSH terms: Genome, Plant
  11. Pipatchartlearnwong K, Swatdipong A, Vuttipongchaikij S, Apisitwanich S
    BMC Genet, 2017 10 12;18(1):88.
    PMID: 29025415 DOI: 10.1186/s12863-017-0554-y
    BACKGROUND: Borassus flabellifer or Asian Palmyra palm is an important crop for local economies in the South and Southeast Asia for its fruit and palm sugar production. Archeological and historical evidence indicated the presence of this species in Southeast Asia dating back at least 1500 years. B. flabellifer is believed to be originated in Africa, spread to South Asia and introduced into Southeast Asia through commercial routes and dissemination of cultures, however, the nature of its invasion and settlement in Thailand is unclear.

    RESULTS: Here, we analyzed genetic data of 230 B. flabellifer accessions across Thailand using 17 EST-SSR and 12 gSSR polymorphic markers. Clustering analysis revealed that the population consisted of two genetic clusters (STRUCTURE K = 2). Cluster I is found mainly in southern Thailand, while Cluster II is found mainly in the northeastern. Those found in the central are of an extensive mix between the two. These two clusters are in moderate differentiation (F ST = 0.066 and N M = 3.532) and have low genetic diversity (HO = 0.371 and 0.416; AR = 2.99 and 3.19, for the cluster I and II respectively). The minimum numbers of founders for each genetic group varies from 3 to 4 individuals, based on simulation using different allele frequency assumptions. These numbers coincide with that B. flabellifer is dioecious, and a number of seeds had to be simultaneously introduced for obtaining both male and female founders.

    CONCLUSIONS: From these data and geographical and historical evidence, we hypothesize that there were at least two different invasive events of B. flabellifer in Thailand. B. flabellifer was likely brought through the Straits of Malacca to be propagated in the southern Thailand as one of the invasive events before spreading to the central Thailand. The second event likely occurred in Khmer Empire, currently Cambodia, before spreading to the northeastern Thailand.

    Matched MeSH terms: Genome, Plant
  12. Osman A, Jordan B, Lessard PA, Muhammad N, Haron MR, Riffin NM, et al.
    Plant Physiol, 2003 Mar;131(3):1294-301.
    PMID: 12644679 DOI: 10.1104/pp.012492
    Eurycoma longifolia Jack. is a treelet that grows in the forests of Southeast Asia and is widely used throughout the region because of its reported medicinal properties. Widespread harvesting of wild-grown trees has led to rapid thinning of natural populations, causing a potential decrease in genetic diversity among E. longifolia. Suitable genetic markers would be very useful for propagation and breeding programs to support conservation of this species, although no such markers currently exist. To meet this need, we have applied a genome complexity reduction strategy to identify a series of single nucleotide polymorphisms (SNPs) within the genomes of several E. longifolia accessions. We have found that the occurrence of these SNPs reflects the geographic origins of individual plants and can distinguish different natural populations. This work demonstrates the rapid development of molecular genetic markers in species for which little or no genomic sequence information is available. The SNP markers that we have developed in this study will also be useful for identifying genetic fingerprints that correlate with other properties of E. longifolia, such as high regenerability or the appearance of bioactive metabolites.
    Matched MeSH terms: Genome, Plant
  13. Md-Mustafa ND, Khalid N, Gao H, Peng Z, Alimin MF, Bujang N, et al.
    BMC Genomics, 2014;15:984.
    PMID: 25407215 DOI: 10.1186/1471-2164-15-984
    Panduratin A extracted from Boesenbergia rotunda is a flavonoid reported to possess a range of medicinal indications which include anti-dengue, anti-HIV, anti-cancer, antioxidant and anti-inflammatory properties. Boesenbergia rotunda is a plant from the Zingiberaceae family commonly used as a food ingredient and traditional medicine in Southeast Asia and China. Reports on the health benefits of secondary metabolites extracted from Boesenbergia rotunda over the last few years has resulted in rising demands for panduratin A. However large scale extraction has been hindered by the naturally low abundance of the compound and limited knowledge of its biosynthetic pathway.
    Matched MeSH terms: Genome, Plant
  14. Ton LB, Neik TX, Batley J
    Genes (Basel), 2020 09 30;11(10).
    PMID: 33008008 DOI: 10.3390/genes11101161
    Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
    Matched MeSH terms: Genome, Plant
  15. Ng SM, Lee XW, Mat-Isa MN, Aizat-Juhari MA, Adam JH, Mohamed R, et al.
    Sci Rep, 2018 Nov 22;8(1):17258.
    PMID: 30467394 DOI: 10.1038/s41598-018-35173-1
    Parasitic plants are known to discard photosynthesis thus leading to the deletion or loss of the plastid genes. Despite plastid genome reduction in non-photosynthetic plants, some nucleus-encoded proteins are transported back to the plastid to carry out specific functions. In this work, we study such proteins in Rafflesia cantleyi, a member of the holoparasitic genus well-known for producing the largest single flower in the world. Our analyses of three transcriptome datasets, two holoparasites (R. cantleyi and Phelipanche aegyptiaca) and one photosynthetic plant (Arabidopsis thaliana), suggest that holoparasites, such as R. cantleyi, retain some common plastid associated processes such as biosynthesis of amino acids and lipids, but are missing photosynthesis components that can be extensions of these pathways. The reconstruction of two selected biosynthetic pathways involving plastids correlates the trend of plastid retention to pathway complexity - transcriptome evidence for R. cantleyi suggests alternate mechanisms in regulating the plastidial heme and terpenoid backbone biosynthesis pathways. The evolution to holoparasitism from autotrophy trends towards devolving the plastid genes to the nuclear genome despite the functional sites remaining in the plastid, or maintaining non-photosynthetic processes in the plastid, before the eventual loss of the plastid and any site dependent functions.
    Matched MeSH terms: Genome, Plant
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links