Displaying publications 41 - 60 of 111 in total

Abstract:
Sort:
  1. Mohd Hafez Mohd Isa, Frazier AR, Jauregi P
    Sains Malaysiana, 2012;41:1117-1124.
    Biosurfactants are microbially produced surface active agents that offer better biodegradability and lower toxicity than chemically synthesized surfactants because of their biogenetic origin. One of the most surface-active biosurfactants known is surfactin, a cyclic lipopeptide produced by various strains of Bacillus subtilis. In this study, the cleaning potential of surfactin on ultrafiltration (UF) membranes fouled with BSA was studied using centrifugal UF devices of 50 kDa and 100 kDa MWCO polyethersulfone (PES) membranes. Mechanisms of bovine serum albumin (BSA) displacement by surfactin on fouled UF membranes were studied using dynamic light scattering (DLS) technique and surface tension measurements. Hydrodynamic diameter and surface tension measurements of BSA-surfactin mixtures showed that the surfactin was efficient in displacing BSA fouled on UF membranes due to strong electrostatic repulsive interactions involved at pH8.5. This study demonstrated that surfactin can be used to effectively clean fouled UF membranes.
    Matched MeSH terms: Hydrodynamics
  2. Mirza IA, Abdulhameed M, Vieru D, Shafie S
    Comput Methods Programs Biomed, 2016 Dec;137:149-166.
    PMID: 28110721 DOI: 10.1016/j.cmpb.2016.09.014
    Therapies with magnetic/electromagnetic field are employed to relieve pains or, to accelerate flow of blood-particles, particularly during the surgery. In this paper, a theoretical study of the blood flow along with particles suspension through capillary was made by the electro-magneto-hydrodynamic approach. Analytical solutions to the non-dimensional blood velocity and non-dimensional particles velocity are obtained by means of the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The study of thermally transfer characteristics is based on the energy equation for two-phase thermal transport of blood and particles suspension with viscous dissipation, the volumetric heat generation due to Joule heating effect and electromagnetic couple effect. The solution of the nonlinear heat transfer problem is derived by using the velocity field and the integral transform method. The influence of dimensionless system parameters like the electrokinetic width, the Hartman number, Prandtl number, the coefficient of heat generation due to Joule heating and Eckert number on the velocity and temperature fields was studied using the Mathcad software. Results are presented by graphical illustrations.
    Matched MeSH terms: Hydrodynamics*
  3. Md. Jashim Uddin, Md. Ismail A, Hamad M
    Sains Malaysiana, 2012;41:1139-1148.
    The steady laminar combined convective flow with heat and mass transfer of a Newtonian viscous incompressible fluid over a permeable flat plate with linear hydrodynamic and thermal slips has been investigated numerically. The velocity of the external flow, the suction/injection velocity and the temperature of the plate surface are assumed to vary nonlinearly following the power law with the distance along the plate from the origin. Lie group analysis is used to develop the similarity transformations and the governing momentum, the energy conservation and the mass conservation equations are converted to a system of coupled nonlinear ordinary differential equations with the associated boundary conditions. The resulting equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order numerical method. The effects of hydrodynamic slip parameter (a), thermal slip parameter (b), suction/injection parameter (fw), power law parameter (m), buoyancy ratio parameter (N), Prandtl number (Pr) and Schmidt number (Sc) on the fluid flow, heat transfer and mass transfer characteristics are investigated and presented graphically. We have also shown the effects of the Reynolds number (Re) and the power law parameter (m) on the velocity slip and the thermal slip factors. Good agreement is found between the numerical results of the present paper and published results.
    Matched MeSH terms: Hydrodynamics
  4. Mathew MJ, Sautter B, Ariffin EH, Menier D, Ramkumar M, Siddiqui NA, et al.
    Sci Total Environ, 2020 Mar 01;706:135963.
    PMID: 31862602 DOI: 10.1016/j.scitotenv.2019.135963
    Current worldwide projections of sea-level rise show a staggering increase in water level of up to 2 m by 2100 owing to global warming exacerbated by anthropogenically induced climate change. While amplified rates of sea-level rise is an immense hazard to coastal communities, storm surges are expected to increase in intensity and frequency making it an equally significant threat to coastal populations. In France, these hazards are not uncommon with records of extreme tempests every thousand years in the Holocene. Despite these recurring devastating events, in the Bay of Saint-Brieuc, Brittany, legislated laws for coastal management do not entirely focus on protecting littoral zones from such calamities. 130,739 people are concentrated in 21 municipalities with major cities located at close proximity to the shoreline with numerous socio-economic activities, which increases the vulnerability of the coastal population and infrastructures; thus, affirming the indispensable need of a thorough vulnerability assessment. Here, we conduct a mechanistic appraisal of the vulnerability of the bay considering thirteen parameters within three governing sub-systems that demonstrate the multidimensional dynamics in these municipalities. In the occasion of an extreme climatic event, our results of total vulnerability show risks in the sub-systems highlighting erosional processes due to augmented hydrodynamics, socio-economic and administrative vulnerabilities associated with anthropogenic development. Eight municipalities of the bay portray moderate to very high vulnerability and the remaining exhibits a lower risk; however, not devoid of high vulnerabilities for certain sub-systems. We posit that a more accurate fit for predicting the total vulnerability of the region can be achieved by exclusively integrating physical-natural and administrative sub-system vulnerabilities. We propose generic but requisite recommendations for Integrated Coastal Zone Management such as surveillance of urban development along the coast, implementation of coastal defense systems and appropriate industrial corridors to attenuate and dispose hazardous refuse.
    Matched MeSH terms: Hydrodynamics
  5. Mat Noor NA, Shafie S, Admon MA
    PLoS One, 2021;16(5):e0250402.
    PMID: 33956793 DOI: 10.1371/journal.pone.0250402
    The heat and mass transfer on time dependent hydrodynamic squeeze flow of Jeffrey nanofluid across two plates over permeable medium in the slip condition with heat generation/absorption, thermal radiation and chemical reaction are investigated. The impacts of Brownian motion and thermophoresis is examined in the Buongiorno's nanofluid model. Conversion of the governing partial differential equations to the ordinary differential equations is conducted via similarity transformation. The dimensionless equations are solved by imposing numerical method of Keller-box. The outputs are compared with previous reported works in the journals for the validation of the present outputs and found in proper agreement. The behavior of velocity, temperature, and nanoparticles concentration profiles by varying the pertinent parameters are examined. Findings portray that the acceleration of the velocity profile and the wall shear stress is due to the squeezing of plates. Furthermore, the velocity, temperature and concentration profile decline with boost in Hartmann number and ratio of relaxation to retardation times. It is discovered that the rate of heat transfer and temperature profile increase when viscous dissipation, thermophoresis and heat source/sink rises. In contrast, the increment of thermal radiation reduces the temperature and enhances the heat transfer rate. Besides, the mass transfer rate decelerates for increasing Brownian motion in nanofluid, while it elevates when chemical reaction and thermophoresis increases.
    Matched MeSH terms: Hydrodynamics
  6. Mat Daud NI, Viswanathan KK
    PLoS One, 2019;14(7):e0219089.
    PMID: 31269073 DOI: 10.1371/journal.pone.0219089
    Vibrational behaviour of symmetric angle-ply layered circular cylindrical shell filled with quiescent fluid is presented. The equations of motion of cylindrical shell in terms of stress and moment resultants are derived from the first order shear deformation theory. Irrotational of inviscid fluid are expressed as the wave equation. These two equations are coupled. Strain-displacement relations and stress-strain relations are adopted into the equations of motion to obtain the differential equations with displacements and rotational functions. A system of ordinary differential equation is obtained in one variable by assuming the functions in separable form. Spline of order three is applied to approximate the displacement and rotational functions, together with boundary conditions, to get a generalised eigenvalue problem. The eigenvalue problem is solved for eigen frequency parameter and associate eigenvectors of spline coefficients. The study of frequency parameters are analysed using the parameters the thickness ratio, length ratio, angle-ply, properties of material and number of layers under different boundary conditions.
    Matched MeSH terms: Hydrodynamics
  7. Mansur S, Ishak A, Pop I
    PLoS One, 2015;10(3):e0117733.
    PMID: 25760733 DOI: 10.1371/journal.pone.0117733
    The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface.
    Matched MeSH terms: Hydrodynamics*
  8. Malek, M. A., Heyrani, M., Juneng, Liew
    ASM Science Journal, 2015;9(1):8-19.
    MyJurnal
    In this study, the implementation of the Regional Climate Model into the hydrodynamic model has been applied for streamflow projection on a river located at the south of Peninsular Malaysia within the years 2070 till 2099. The data has been obtained from a Regional Climate Model (RCM), named Précis, on a daily basis. It begins by comparing historical rainfall data generated from Précis versus the actual gauged recorded rainfall data from Department of Irrigation and Drainage Malaysia (DID). The bias of the generated rainfall data has been reduced by statistical techniques. The same has been applied to the future generated rainfall data from 2070 to 2099. Using the generated precipitation data as input to the hydrological model, results in the daily output of river discharge identified as the main contributor of flood occurrences. Based on the results of the hydrological model utilised, e.g. HEC-HMS, comparison was made between the future and historical generated discharge data using Précis between the years 1960 till 1998. Dividing a year into three segments, e.g. January-April, May-August, SeptemberDecember, the results show that there would be a significant drop of peak discharge in the third segment and an increase in discharge during the second segment. The first part remains almost with no changes. As an addition, the drop of the peak shows reduction in the probability of flood occurrences. It also indicates the reduction in water storage capacity which coherently affects the water supply scheme
    Matched MeSH terms: Hydrodynamics
  9. Mabood F, Khan WA, Ismail AI
    PLoS One, 2013;8(12):e83581.
    PMID: 24376722 DOI: 10.1371/journal.pone.0083581
    In this article, an approximate analytical solution of flow and heat transfer for a viscoelastic fluid in an axisymmetric channel with porous wall is presented. The solution is obtained through the use of a powerful method known as Optimal Homotopy Asymptotic Method (OHAM). We obtained the approximate analytical solution for dimensionless velocity and temperature for various parameters. The influence and effect of different parameters on dimensionless velocity, temperature, friction factor, and rate of heat transfer are presented graphically. We also compared our solution with those obtained by other methods and it is found that OHAM solution is better than the other methods considered. This shows that OHAM is reliable for use to solve strongly nonlinear problems in heat transfer phenomena.
    Matched MeSH terms: Hydrodynamics*
  10. Lund LA, Omar Z, Khan I
    Comput Methods Programs Biomed, 2019 Dec;182:105044.
    PMID: 31491654 DOI: 10.1016/j.cmpb.2019.105044
    BACKGROUND AND OBJECTIVE: The last two and half decades are witnessed a great surge in the use convective fluids for enhancement of heat transfer of minerals ethylene glycol, oil and water due to their numerous applications in the industrial segments including chemical production, microelectronics, power generation, transportation, and air-conditioning. For this purpose, different procedures were applied to upgrade the thermal conductivity of common fluid but could not. Further, Choi and Eastman in 1995 introduced nanofluid which has good thermal properties as compared to common fluids. After that, it can be seen that researchers, mathematicians, and scientists tried to understand the principles of nanofluids and how to implicate them in many different practical applications. In this work, the Buongiorno model has been considered for nanofluid. One of the prime objectives is to consider all possible multiple solutions of the model because these solutions cannot be seen experimentally.

    METHODS: The governing equations of fluid flow have been transformed in the form of ordinary differential equations. These equations have been solved by two methods namely, shooting method and three-stage Lobatto IIIa formula.

    RESULTS: The effects of different parameters on temperature, velocity, concentration profiles, skin friction coefficient, Sherwood number, and reduced Nusselt number were obtained and presented graphically. It was noticed that four solutions existed at definite ranges of the parameters for high suction over both surfaces for the first time. The results of the stability analysis revealed that only the first solution is more stable and possess physical reliability compared to the remaining solutions.

    CONCLUSION: The graphs also indicated that the fluid velocity decreases as the thermophoresis parameter increases but the opposite behavior observed for both temperature and concentration profiles in the first solution. Furthermore, it was detected that the concentration profile declined at the higher values of the Brownian motion parameter.

    Matched MeSH terms: Hydrodynamics*
  11. Low WS, Kadri NA, Abas WA
    ScientificWorldJournal, 2014;2014:961301.
    PMID: 25136701 DOI: 10.1155/2014/961301
    We propose a strategy for optimizing distribution of flow in a typical benchtop microfluidic chamber for dielectrophoretic application. It is aimed at encouraging uniform flow velocity along the whole analysis chamber in order to ensure DEP force is evenly applied to biological particle. Via the study, we have come up with a constructive strategy in improving the design of microfluidic channel which will greatly facilitate the use of DEP system in laboratory and primarily focus on the relationship between architecture and cell distribution, by resorting to the tubular structure of blood vessels. The design was validated by hydrodynamic flow simulation using COMSOL Multiphysics v4.2a software. Simulations show that the presence of 2-level bifurcation has developed portioning of volumetric flow which produced uniform flow across the channel. However, further bifurcation will reduce the volumetric flow rate, thus causing undesirable deposition of cell suspension around the chamber. Finally, an improvement of microfluidic design with rounded corner is proposed to encourage a uniform cell adhesion within the channel.
    Matched MeSH terms: Hydrodynamics
  12. Liyana Mohd Ali Napia, Faizal Mohamed, Hur Munawar Kabir Mohd, Intan Syakeela Ahmad Bastamam, Shamellia Sharin, Norsyahidah Mohd Hidzir, et al.
    Sains Malaysiana, 2018;47:1235-1240.
    Unilamellar liposomes composed of dipalmitoylphosphatidylcholine (DPPC) were prepared by the reverse-phase
    evaporation method and extrusion through a polycarbonate membrane filter. Liposomes at 0.7 mg/mL lipid concentration
    in deionized water were exposed to gamma irradiation at a dose in the range 0.5 to 25 kGy. Gamma irradiation of
    liposomes resulted in the degradation of DPPC lipids into free fatty acids, lysophosphatidylcholine and 1,2-palmitoylphosphatidic
    acid (DPPA). The effect of gamma irradiation towards the physical stability of liposomes was investigated
    by means of dynamic light scattering (DLS), transmission electron microscopy (TEM) and zeta potential analysis. From
    the DLS analysis, no significant changes were observed in the hydrodynamic size of liposomes. TEM images indicate that
    the liposomes surface became smoother and rounder as higher irradiation doses were applied. Zeta potential analysis
    showed that gamma irradiation of DPPC liposomes at radiation doses as low as 0.5 kGy resulted in a drastic rise in the
    magnitude of the zeta potential. The results also demonstrate that gamma irradiation of liposomes suspension enhanced
    the overall stability of liposomes. Hence, it can be concluded that gamma irradiation on DPPC liposomes may potentially
    produce liposomes with higher stability.
    Matched MeSH terms: Hydrodynamics
  13. Lim ZF, Rajendran P, Musa MY, Lee CF
    Vis Comput Ind Biomed Art, 2021 May 20;4(1):14.
    PMID: 34014417 DOI: 10.1186/s42492-021-00080-2
    A numerical simulation of a patient's nasal airflow was developed via computational fluid dynamics. Accordingly, computerized tomography scans of a patient with septal deviation and allergic rhinitis were obtained. The three-dimensional (3D) nasal model was designed using InVesalius 3.0, which was then imported to (computer aided 3D interactive application) CATIA V5 for modification, and finally to analysis system (ANSYS) flow oriented logistics upgrade for enterprise networks (FLUENT) to obtain the numerical solution. The velocity contours of the cross-sectional area were analyzed on four main surfaces: the vestibule, nasal valve, middle turbinate, and nasopharynx. The pressure and velocity characteristics were assessed at both laminar and turbulent mass flow rates for both the standardized and the patient's model nasal cavity. The developed model of the patient is approximately half the size of the standardized model; hence, its velocity was approximately two times more than that of the standardized model.
    Matched MeSH terms: Hydrodynamics
  14. Leong SS, Ahmad Z, Low SC, Camacho J, Faraudo J, Lim J
    Langmuir, 2020 07 21;36(28):8033-8055.
    PMID: 32551702 DOI: 10.1021/acs.langmuir.0c00839
    The migration process of magnetic nanoparticles and colloids in solution under the influence of magnetic field gradients, which is also known as magnetophoresis, is an essential step in the separation technology used in various biomedical and engineering applications. Many works have demonstrated that in specific situations, separation can be performed easily with the weak magnetic field gradients created by permanent magnets, a process known as low-gradient magnetic separation (LGMS). Due to the level of complexity involved, it is not possible to understand the observed kinetics of LGMS within the classical view of magnetophoresis. Our experimental and theoretical investigations in the last years unravelled the existence of two novel physical effects that speed up the magnetophoresis kinetics and explain the observed feasibility of LGMS. Those two effects are (i) cooperative magnetophoresis (due to the cooperative motion of strongly interacting particles) and (ii) magnetophoresis-induced convection (fluid dynamics instability originating from inhomogeneous magnetic gradients). In this feature article, we present a unified view of magnetophoresis based on the extensive research done on these effects. We present the physical basis of each effect and also propose a classification of magnetophoresis into four distinct regimes. This classification is based on the range of values of two dimensionless quantities, namely, aggregation parameter N* and magnetic Grashof number Grm, which include all of the dependency of LGMS on various physical parameters (such as particle properties, thermodynamic parameters, fluid properties, and magnetic field properties). This analysis provides a holistic view of the classification of transport mechanisms in LGMS, which could be particularly useful in the design of magnetic separators for engineering applications.
    Matched MeSH terms: Hydrodynamics
  15. Lee CF, Abdullah MZ, Ahmad KA, Lutfi Shuaib I
    Comput Math Methods Med, 2013;2013:519071.
    PMID: 23840279 DOI: 10.1155/2013/519071
    This research focuses on creating a standardized nasal cavity model of adult Malaysian females. The methodology implemented in this research is a new approach compared to other methods used by previous researchers. This study involves 26 females who represent the test subjects for this preliminary study. Computational fluid dynamic (CFD) analysis was carried out to better understand the characteristics of the standardized model and to compare it to the available standardized Caucasian model. This comparison includes cross-sectional areas for both half-models as well as velocity contours along the nasal cavities. The Malaysian female standardized model is larger in cross-sectional area compared to the standardized Caucasian model thus leading to lower average velocity magnitudes. The standardized model was further evaluated with four more Malaysian female test subjects based on its cross-sectional areas and average velocity magnitudes along the nasal cavities. This evaluation shows that the generated model represents an averaged and standardized model of adult Malaysian females.
    Matched MeSH terms: Hydrodynamics
  16. LIM XUE YEN, AHMAD FITRIADHY
    MyJurnal
    Concerning on navigational safety of a ship, comprehensive investigation of manoeuvrability of the ship is prominently required. The turning instability due to improper speed and magnitude of the rudder angle is vulnerable to serious accidents such as collision especially in the confined waters. This paper presents a computational fluid dynamic analyses on manoeuvrability performance of a tug in calm water. Here, the characteristics of the turning ability and zig-zag characteristics of the tug has been assessed due to effect of the various angles of twin-rudder and turning speeds. The results revealed that the increase of rudder’s angle resulted in subsequent reduction of her advance diameter from 144 m, 108 m, 96 m to 92 m. While for zig zag manoeuvre, the first overshoot angle is 0.6° and 1.08° for 10°/10° and 20°/20° rudder’s angle respectively. The first overshoot and second overshoot angle are within the IMO criteria which is below 20° and 25°. However, the increase of turning speed from 7 knots to 9 knots has been proportional with the increase of the turning diameter (advance diameter) from 70 m to 105.2 m. Basically, the turning performances of the tug manoeuvring with the turning speed of 7 to 9 knots incorporated with rudder’s angle 20°, 25°, 30° and 35° have been complied with IMO manoeuvring standards. This preliminary analysis contributes very valuable findings at early ship design stage to provide a safety of the navigational guidance for turning ability of the tug.
    Matched MeSH terms: Hydrodynamics
  17. Kohilavani Naganthran, Roslinda Nazar, Ioan Pop
    Sains Malaysiana, 2018;47:1069-1076.
    This study offers the numerical solutions for the problem of mixed convection stagnation-point flow along a permeable
    vertical flat plate in an Oldroyd-B fluid. The present investigation considers the effects of thermal radiation and heat
    generation/absorption in the fluid flow. The similarity transformation simplifies the complex model and the bvp4c function
    generates the numerical solutions according to the variations in the governing parameters. A higher degree of shrinking
    hastens flow separations. The dual solutions are visible in the range of buoyancy opposing flow. The results from this study
    may be useful for the scientist to understand the behaviour of the dilute polymer solutions in the industrial applications,
    for example, the drag reduction in pipe flows.
    Matched MeSH terms: Hydrodynamics
  18. Koh MK, Sathiamurthy E, Suratman S, Tahir NM
    Environ Monit Assess, 2012 Dec;184(12):7653-64.
    PMID: 22302401
    Influences of river hydrodynamic behaviours on hydrochemistry (salinity, pH, dissolved oxygen saturations and dissolved phosphorus) were evaluated through high spatial and temporal resolution study of a sandbar-regulated coastal river. River hydrodynamic during sandbar-closed event was characterized by minor dependency on tidal fluctuations, very gradual increase of water level and continual low flow velocity. These hydrodynamic behaviours established a hydrochemistry equilibrium, in which water properties generally were characterized by virtual absence of horizontal gradients while vertical stratifications were significant. In addition, the river was in high trophic status as algae blooms were visible. Conversely, river hydrodynamic in sandbar-opened event was tidal-controlled and showed higher flow velocity. Horizontal gradients of water properties became significant while vertically more homogenised and with lower trophic status. In essence, this study reveals that estuarine sandbar directly regulates river hydrodynamic behaviours which in turn influences river hydrochemistry.
    Matched MeSH terms: Hydrodynamics*
  19. Khan I, Ali F, Shafie S
    PLoS One, 2013;8(5):e61531.
    PMID: 23667442 DOI: 10.1371/journal.pone.0061531
    The present work is concerned with exact solutions of Stokes second problem for magnetohydrodynamics (MHD) flow of a Burgers' fluid. The fluid over a flat plate is assumed to be electrically conducting in the presence of a uniform magnetic field applied in outward transverse direction to the flow. The equations governing the flow are modeled and then solved using the Laplace transform technique. The expressions of velocity field and tangential stress are developed when the relaxation time satisfies the condition γ =  λ²/4 or γ> λ²/4. The obtained closed form solutions are presented in the form of simple or multiple integrals in terms of Bessel functions and terms with only Bessel functions. The numerical integration is performed and the graphical results are displayed for the involved flow parameters. It is found that the velocity decreases whereas the shear stress increases when the Hartmann number is increased. The solutions corresponding to the Stokes' first problem for hydrodynamic Burgers' fluids are obtained as limiting cases of the present solutions. Similar solutions for Stokes' second problem of hydrodynamic Burgers' fluids and those for Newtonian and Oldroyd-B fluids can also be obtained as limiting cases of these solutions.
    Matched MeSH terms: Hydrodynamics*
  20. Khan I, Ali Shah N, Tassaddiq A, Mustapha N, Kechil SA
    PLoS One, 2018;13(1):e0188656.
    PMID: 29304161 DOI: 10.1371/journal.pone.0188656
    This paper studies the heat transfer analysis caused due to free convection in a vertically oscillating cylinder. Exact solutions are determined by applying the Laplace and finite Hankel transforms. Expressions for temperature distribution and velocity field corresponding to cosine and sine oscillations are obtained. The solutions that have been obtained for velocity are presented in the forms of transient and post-transient solutions. Moreover, these solutions satisfy both the governing differential equation and all imposed initial and boundary conditions. Numerical computations and graphical illustrations are used in order to study the effects of Prandtl and Grashof numbers on velocity and temperature for various times. The transient solutions for both cosine and sine oscillations are also computed in tables. It is found that, the transient solutions are of considerable interest up to the times t = 15 for cosine oscillations and t = 1.75 for sine oscillations. After these moments, the transient solutions can be neglected and, the fluid moves according with the post-transient solutions.
    Matched MeSH terms: Hydrodynamics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links