Displaying publications 41 - 53 of 53 in total

Abstract:
Sort:
  1. Noman E, Norulaini Nik Ab Rahman N, Al-Gheethi A, Nagao H, Talip BA, Ab Kadir O
    Environ Sci Pollut Res Int, 2018 Aug;25(22):21682-21692.
    PMID: 29785605 DOI: 10.1007/s11356-018-2335-1
    The present study aimed to select the best medium for inactivation of Aspergillus fumigatus, Aspergillus spp. in section Nigri, A. niger, A. terreus var. terreus, A. tubingensis, Penicillium waksmanii, P. simplicissimum, and Aspergillus sp. strain no. 145 spores in clinical wastes by using supercritical carbon dioxide (SC-CO2). There were three types of solutions used including normal saline, seawater, distilled water, and physiological saline with 1% of methanol; each solution was tested at 5, 10, and 20 mL of the water contents. The experiments were conducted at the optimum operating parameters of supercritical carbon dioxide (30 MPa, 75 °C, 90 min). The results showed that the inactivation rate was more effective in distilled water with the presence of 1% methanol (6 log reductions). Meanwhile, the seawater decreases inactivation rate more than normal saline (4.5 vs. 5.1 log reduction). On the other hand, the experiments performed with different volumes of distilled water (5, 10, and 20 mL) indicated that A. niger spores were completely inactivated with 10 mL of distilled water. The inactivation rate of fungal spores decreased from 6 to 4.5 log as the amount of distilled water increased from 10 to 20 mL. The analysis for the spore morphology of A. fumigatus and Aspergillus spp. in section Nigri using scanning electron microscopy (SEM) has revealed the role of temperature and pressure in the SC-CO2 in the destruction of the cell walls of the spores. It can be concluded that the distilled water represent the best medium for inactivation of fungal spores in the clinical solid wastes by SC-CO2.
    Matched MeSH terms: Penicillium
  2. Chow Y, Ting AS
    J Adv Res, 2015 Nov;6(6):869-76.
    PMID: 26644924 DOI: 10.1016/j.jare.2014.07.005
    Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition) to pink (alkaline condition). The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40), followed by O. diffusa (25), C. citratus (14) and M. koenigii (10). Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL(-1) min(-1). l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo.
    Matched MeSH terms: Penicillium
  3. Nor NM, Baseri MM
    Curr. Opin. Infect. Dis., 2015 Apr;28(2):133-8.
    PMID: 25706913 DOI: 10.1097/QCO.0000000000000150
    We reviewed current literature on four different skin and subcutaneous infections which are often touted as 'emerging diseases' of south-east Asia, namely melioidosis, penicilliosis, sporotrichosis and Mycobacterium marinum infection. Lack of consensus treatment guidelines, high treatment costs and limited investigative capability in certain endemic areas are among the challenges faced by managing physicians. With the increase in borderless travelling, it is hoped that this review will facilitate better understanding and heighten the clinical suspicion of such infections for clinicians in other parts of the world.
    Matched MeSH terms: Penicillium/isolation & purification
  4. Al-Samarrai G, Singh H, Syarhabil M
    Ann Agric Environ Med, 2012;19(4):673-6.
    PMID: 23311787
    Fungicides are widely used in conventional agriculture to control plant diseases. Prolonged usage often poses health problems as modern society is becoming more health-conscious. Penicillium digitatum, the cause of citrus green mould, is an important postharvest pathogen which causes serious losses annually. The disease is currently managed with synthetic fungicides. There is, however, a growing concern globally about the continuous use of synthetic chemicals on food crops because of their potential effects on human health and the environment.
    Matched MeSH terms: Penicillium/drug effects*
  5. Alhelli AM, Abdul Manap MY, Mohammed AS, Mirhosseini H, Suliman E, Shad Z, et al.
    Int J Mol Sci, 2016 Nov 11;17(11).
    PMID: 27845736
    Penicillium candidum (PCA 1/TT031) synthesizes different types of extracellular proteases. The objective of this study is to optimize polyethylene glycol (PEG)/citrate based on an aqueous two-phase system (ATPS) and Response Surface Methodology (RSM) to purify protease from Penicillium candidum (PCA 1/TT031). The effects of different PEG molecular weights (1500-10,000 g/mol), PEG concentration (9%-20%), concentrations of NaCl (0%-10%) and the citrate buffer (8%-16%) on protease were also studied. The best protease purification could be achieved under the conditions of 9.0% (w/w) PEG 8000, 5.2% NaCl, and 15.9% sodium citrate concentration, which resulted in a one-sided protease partitioning for the bottom phase with a partition coefficient of 0.2, a 6.8-fold protease purification factor, and a yield of 93%. The response surface models displayed a significant (p ≤ 0.05) response which was fit for the variables that were studied as well as a high coefficient of determination (R²). Similarly, the predicted and observed values displayed no significant (p > 0.05) differences. In addition, our enzyme characterization study revealed that Penicillium candidum (PCA 1/TT031) produced a slight neutral protease with a molecular weight between 100 and 140 kDa. The optimal activity of the purified enzyme occurred at a pH of 6.0 and at a temperature of 50 °C. The stability between different pH and temperature ranges along with the effect of chemical metal ions and inhibitors were also studied. Our results reveal that the purified enzyme could be used in the dairy industry such as in accelerated cheese ripening.
    Matched MeSH terms: Penicillium/enzymology*
  6. Varghese G
    Mycopathol Mycol Appl, 1972 Oct 09;48(1):43-61.
    PMID: 4677628
    Matched MeSH terms: Penicillium/isolation & purification
  7. Majeed S, Abdullah MS, Dash GK, Ansari MT, Nanda A
    Chin J Nat Med, 2016 Aug;14(8):615-20.
    PMID: 27608951 DOI: 10.1016/S1875-5364(16)30072-3
    Biosynthesis of silver and other metallic nanoparticles is one of the emerging research area in the field of science and technology due to their potentiality, especially in the field of nano-biotechnology and biomedical sciences in order to develop nanomedicine. In our present study, Penicillium decumbens (MTCC-2494) was brought from Institute of Microbial Technology (IMTECH) Chandigarh and employed for extracellular biological synthesis of silver nanoparticles. Ag-NPs formation was appeared with a dark brown color inside the conical flask. Characterization of Ag-NPs were done by UV-Spectrophotometric analysis which showed absorption peak at 430 nm determines the presence of nanoparticles, Fourier transform infrared (FT-IR) spectroscopic analysis, showed amines and amides are the possible proteins involved in the stabilization of nanoparticles as capping agent. Atomic force Microscopy (AFM) confirmed the particle are spherical, size was around 30 to 60 nm and also the roughness of nanoparticles. Field emission scanning electron microscopy (FE-SEM) showed the topology of the nanoparticles and were spherical in shape. The biosynthesis process was found fast, ecofriendly and cost effective. Nano-silver particle was found to have a broad antimicrobial activity and also it showed good enhancement of antimicrobial activity of Carbenicillin, Piperacillin, Cefixime, Amoxicillin, Ofloxacin and Sparfloxacin in a synergistic mode. These Ag-NPs showed good anti-cancer activity at 80 μg·mL(-1)upon 24 hours of incubation and toxicity increases upon 48 hours of incubation against A-549 human lung cancer cell line and the synergistic formulation of the antibiotic with the synthesized nanoparticles was found more effective against the pathogenic bacteria studied.
    Matched MeSH terms: Penicillium/metabolism*
  8. Chen SH, Cheow YL, Ng SL, Ting ASY
    J Hazard Mater, 2019 01 15;362:394-402.
    PMID: 30248661 DOI: 10.1016/j.jhazmat.2018.08.077
    Penicillium simplicissimum (isolate 10), a metal tolerant fungus, tolerated 1000 mg/L Cu and 500 mg/L Zn, but were inhibited by Cd (100 mg/L), evident by the Tolerance Index (TI) of 0.88, 0.83, and 0.08, respectively. Live cells of P. simplicissimum were more effective in removing Cr (88.6%), Pb (73.7%), Cu (63.8%), Cd (33.1%), and Zn (28.3%) than dead cells (5.3-61.7%). Microscopy approach via SEM-EDX and TEM-EDX suggested that metal removal involved biosorption and bioaccumulation, with metal precipitates detected on the cell wall, and in the cytoplasm and vacuoles. FTIR analysis revealed metals interacted with amino, carbonyl, hydroxyl, phosphoryl (except Cd) and nitro groups in the cell wall. Biosorption and bioaccumulation of metals by live cells reduced Cu and Pb toxicity, observed from good root and (4.00-4.28 cm) and shoot (8.07-8.36 cm) growth of Vigna radiata in the phytotoxicity assay.
    Matched MeSH terms: Penicillium/drug effects*
  9. Norbäck D, Hashim JH, Hashim Z, Sooria V, Ismail SA, Wieslander G
    Int J Hyg Environ Health, 2017 06;220(4):697-703.
    PMID: 28254266 DOI: 10.1016/j.ijheh.2017.01.016
    BACKGROUND: There are few studies on ocular effects of indoor mould exposure in schools, especially in the tropics OBJECTIVE: To study associations between eye symptoms and tear film break up time (BUT) in students and demographic data and fungal DNA in schools.

    METHODS: A school environment study was performed among randomly selected students in eight randomly selected secondary schools in Penang, Malaysia. Information on eye symptoms and demographic data was collected by a standardised questionnaire. BUT was measured by two methods, self-reported BUT (SBUT) and by the non-invasive Tearscope (NIBUT). Dust was collected by vacuuming in 32 classrooms and analysed for five fungal DNA sequences. Geometric mean (GM) for total fungal DNA was 7.31*104 target copies per gram dust and for Aspergillus/Penicillium DNA 3.34*104 target copies per gram dust. Linear mixed models and 3-level multiple logistic regression were applied adjusting for demographic factors.

    RESULTS: A total of 368 students (58%) participated and 17.4% reported weekly eye symptoms the last 3 months. The median SBUT and TBUT were 15 and 12s, respectively. Students wearing glasses (OR 2.41, p=0.01) and with a history of atopy (OR=2.67; p=0.008) had more eye symptoms. Girls had less eye symptoms than boys (OR=0.34; p=0.006) Indoor carbon dioxide in the classrooms was low (range 380-720ppm), temperature was 25-30°C and relative air humidity 70-88%. Total fungal DNA in vacuumed dust was associated with shorter SBUT (4s shorter per 105 target copies per gram dust; p=0.04) and NIBUT (4s shorter per 105 target copies per gram dust; p<0.001). Aspergillus/Penicillium DNA was associated with shorter NIBUT (5s shorter per 105 target copies per gram dust; p=0.01).

    CONCLUSION: Fungal contamination in schools in a tropical country can be a risk factor for impaired tear film stability among students.

    Matched MeSH terms: Penicillium/genetics
  10. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN
    Eur J Med Chem, 2020 Sep 15;202:112513.
    PMID: 32623216 DOI: 10.1016/j.ejmech.2020.112513
    Herein we report the design, synthesis and biological evaluation of structurally modified ciprofloxacin, norfloxacin and moxifloxacin standard drugs, featuring amide functional groups at C-3 of the fluoroquinolone scaffold. In vitro antimicrobial testing against various Gram-positive bacteria, Gram-negative bacteria and fungi revealed potential antibacterial and antifungal activity. Hybrid compounds 9 (MIC 0.2668 ± 0.0001 mM), 10 (MIC 0.1358 ± 00025 mM) and 13 (MIC 0.0898 ± 0.0014 mM) had potential antimicrobial activity against a fluoroquinolone-resistant Escherichia coli clinical isolate, compared to ciprofloxacin (MIC 0.5098 ± 0.0024 mM) and norfloxacin (MIC 0.2937 ± 0.0021 mM) standard drugs. Interestingly, compound 10 also exerted potential antifungal activity against Candida albicans (MIC 0.0056 ± 0.0014 mM) and Penicillium chrysogenum (MIC 0.0453 ± 0.0156 mM). Novel derivatives and standard fluoroquinolone drugs exhibited near-identical cytotoxicity levels against L6 muscle cell-line, when measured using the MTT assay.
    Matched MeSH terms: Penicillium chrysogenum/drug effects
  11. Emi Norzehan Mohamad Mahbob, Nurul Huda Musa, Zaidatul Shakila Mohamad Ashari, Fathiah Abdullah, Siti Hajar Noor Alshurdin
    Jurnal Inovasi Malaysia, 2019;2(2):41-54.
    MyJurnal
    Piper betle (sirih) is a medicinal plant that has been reported for various pharmacological activities such as antifungal, antibacterial, antioxidant, anticarcinogenic and, anti-inflammatory. The researchwas carried out to study the antifungal activity of ethanolic extract from P. betle leaves. Matured leaves of P. betle were collected and processed to a fine powder before being extracted using ethanol. The first part of the research involved evaluation of antifungal activity of the ethanolic extracts using disk diffusion method at four different concentrations (5, 25, 50, 100 mg/mL) against 3 types of fungi isolated from laboratory surfaces. The sensitivities of the fungal towards the ethanolic extracts were determined by measuring the size of inhibitory zones. Results showed that highest concentration of the extract (100 mg/mL) inhibited fungal growth for all three types of isolated fungi with 0.97, 0.83, and 0.77 cm zone of inhibition for yeast, Aspergillus sp. and Penicillium sp., respectively. Low concentrations (5, 25 and 50 mg/mL) did not inhibit the fungal growth except for Penicillium sp. that showed zone of inhibition, 0.53 cm at concentration of 50 mg/mL. The second part of the research involved evaluation of fungal count utilizing effective dose of betel leaves ethanolic extract obtained from the first part of this research which is 100 mg/mL. This study found that no fungal growth on the microscope wire that has been sprayed with betel leaves ethanolic extract on Day 1, Day 4 and Day 7. For wire that been sprayed with ethanol 70%, the average of fungal count was same on Day 1 and Day 4 (5.6 x 102 cfu/mL) but increased to 9.2 x 102 cfu/mL on Day 7. In conclusion, betel leaves extract exhibit fungicidal properties that support their use as antifungal agents from natural products which are safe, easily available with no adverse effects.
    Matched MeSH terms: Penicillium
  12. Ling Onn M, Teen Lim P, Aazani Mujahid, Proksch P, Müller M
    Sains Malaysiana, 2016;45:1063-1071.
    Endophytic fungi provide protection to their host plant and the fungi often produce antimicrobial compounds to aid the host
    fighting off pathogens. These bioactive compounds were secondary metabolites which were often produced as waste- or
    by-products. In the present study, endophytic fungi isolated from mangrove plants and soils were characterized and their
    antimicrobial production and bioremediation potential of heavy metals copper (Cu) and zinc (Zn) were assessed. Twelve
    (12) isolated and identified endophytic fungi belonged to seven species; Penicillium, Curvularia, Diaporthe, Aspergillus,
    Guignardia, Neusartorya and Eupenicillium. Antimicrobial activities of these 12 fungal endophytes were tested against
    Gram negative bacteria; Bacillus subtilis, Staphylococcus aureus, Gram positive bacteria; Escherichia coli and fungi;
    Candida albicans and Aspergillus niger among others. Two isolates (related to Guignardia sp. and Neusartoya sp.) showed
    strong antimicrobial (and antifungal) activity whereas the rest showed no activity. Compounds were isolated from both
    isolates and screened using HPLC. Both isolates displayed chemically very interesting chromatograms as they possessed a
    high diversity of basic chemical structures and peaks over a wide range of polarities, with structures similar to Trimeric
    catechin and Helenalin among others. For bioremediation assessment, the results showed maximum biosorption capacity
    for two isolates related to Curvularia sp. and Neusartorya sp., with the former removing 25 mg Cu/g biomass and the
    latter removing 24 mg Zn/g biomass. Our results indicated the potential of mangrove endophytic fungi in producing
    bioactive compounds and also highlighted their potential for the treatment of heavy metal-contaminated wastewater.
    Matched MeSH terms: Penicillium; Eupenicillium
  13. Chuah CH, Ong YC, Kong BH, Woo YY, Wong PS, Leong KN, et al.
    J R Coll Physicians Edinb, 2020 Jun;50(2):138-140.
    PMID: 32568283 DOI: 10.4997/JRCPE.2020.211
    Talaromycosis typically occurs as an opportunistic infection among immunocompromised individuals. Infection caused by species other than T. marneffei is uncommon. While most reported cases describe infection in the lungs, we report an extremely rare intracranial Talaromyces species infection. This 61-year-old with end-stage renal disease who was unwell for the previous two months, presented with fever and worsening confusion lasting for three days. Lumbar puncture was suggestive of meningitis. Cerebrospinal fluid (CSF) culture was later confirmed to be Penicillium chrysogenum. The patient was co-infected with Group B Streptococcus sepsis. He improved with amphotericin B and ceftriaxone and was discharged with oral itraconazole for four weeks. However, he died of unknown causes two weeks later at home. Talaromyces species infection in the central nervous system is uncommon. This case highlighted a rare but life-threatening fungal meningitis. Among the four reported cases worldwide, none of the patients survived.
    Matched MeSH terms: Penicillium chrysogenum
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links