Displaying publications 581 - 600 of 1297 in total

Abstract:
Sort:
  1. Wong PF, Tong KL, Jamal J, Khor ES, Lai SL, Mustafa MR
    EXCLI J, 2019;18:764-776.
    PMID: 31611757 DOI: 10.17179/excli2019-1505
    Accumulation of senescent endothelial cells can cause endothelium dysfunction which eventually leads to age-related vascular disorders. The senescent-associated secretory phenotype (SASP) cells secrete a plethora of soluble factors that negatively influence the surrounding tissue microenvironment. The present study sought to investigate the effects of exosomes, which are nano-sized extracellular vesicles known for intercellular communications secreted by SASP cells on young endothelial cells. Exosomes were isolated from the condition media of senescent human umbilical vein endothelial cells (HUVECs) and then confirmed by the detection of exosome specific CD63 and CD9 expressions, electron microscopy and acetylcholinesterase assay. The purified exosomes were used to treat young HUVECs. Exposure to exosomes repressed the expression of adherens junction proteins including vascular endothelial (VE)-cadherin and beta-catenin, decreased cell growth kinetics and impaired endothelial migration potential of young endothelial cells. These findings suggest that senescent HUVECs-secreted exosomes could disrupt barrier integrity that underpins endothelial barrier dysfunction in healthy young endothelial cells.
    Matched MeSH terms: Microscopy, Electron
  2. Mohamad N, Ramli N, Abd-Aziz S, Ibrahim MF
    3 Biotech, 2019 Jun;9(6):234.
    PMID: 31139549 DOI: 10.1007/s13205-019-1767-8
    Pineapple peel is a potential feedstock for the extraction of essential oil due to the presence of aromatic compounds. To extract the essential oil from pineapple peels, three different methods were applied, i.e., (1) hydro-distillation (HD); (2) hydro-distillation with enzyme-assisted (HDEA); and (3) supercritical fluid extraction (SFE). SFE had successfully produced an essential oil with the yield of 0.17% (w/w) together with 0.64% (w/w) of concrete, whereby the HD and HDEA had only produced hydrosols with the yield of 70.65% (w/w) and 80.65% (w/w), respectively. Parameters' optimization for HD (substrate to solvent ratio, temperature, and extraction duration) and HDEA (cellulase loading and incubation duration) significantly affected the hydrosol yield, but did not extract out the essential oil. This is because only SFE had successfully ruptured the oil gland after observed under the scanning electron microscope. The essential oil obtained from SFE composed of mainly propanoic acid ethyl ester (40.25%), lactic acid ethyl ester (19.35%), 2-heptanol (15.02%), propanol (8.18%), 3-hexanone (2.60%), and butanoic acid ethyl ester (1.58%). In overall, it can be concluded that the SFE had successfully extracted the essential oil as compared to the HD and HDEA methods.
    Matched MeSH terms: Microscopy, Electron, Scanning
  3. Bonthagarala B, Dasari V, Kotra V
    Ther Deliv, 2019 May 01;10(5):295-310.
    PMID: 31094300 DOI: 10.4155/tde-2019-0020
    Aim: The present study revolved around determining the effect of increase in the solubility of these drugs at the absorption site using ritonavir as a drug model. Materials & methods: Ritonavir per-oral tablets were prepared using versatile and nonionic surfactants having high solubilization rate, which were further marked with high rate of dissolution. The high rate of dissolution formula applied to the solid state characterization by means of transition electron microscopy, differential scanning calorimetry, scanning electron microscopy, X-ray diffraction and infrared spectroscopy. Results & conclusion: The drug bioavailability was seen to increase expressively by administration of liquisolid tablets as compared with conventional tablets.
    Matched MeSH terms: Microscopy, Electron, Scanning
  4. Mustaffa Hj. Abdullah, Tan TK
    Samples of Y-Ba-Cu-O superconductor with nominal compositions of YBa2Cu3O7-d + x (weight %) Y2O3 (x = 0 - 15) were prepared by solid state reaction method using the Y2Cu2O5 and BaCuO2 precursors as the starting reagents. The X-ray diffraction (XRD) diffractograms for the doped samples (x> 0) show an additional non-superconducting Y2BaCuO5 (211) phase. The scanning electron microscope (SEM) micrographs show that the smaller Y2BaCuO5 grains are precipitated on the surface of the larger YBa2Cu3O7-d (YBCO) crystals. The grain size of the YBCO decreases with increasing yttria. The superconducting zero resistivity critical temperature (Tco) of the doped samples is very close to the Tco of the YBCO for x < 5, but it seems to be significantly decreasing for larger x. The transport critical current density (J) for x < 5 is enhanced due to magnetic flux pinning process by the 211 phase. However, Jc decreased for larger x due to the increase of weak links at the grain boundaries of the YBCO phase.
    Sampel superkonduktor Y-Ba-Cu-O dengan komposisi nominal YBa2Cu3O7-d + x (% berat) Y2O3 (x = 0 -15) disediakan dengan kaedah tindakbalas keadaan pepejal menggunakan bahan pelopor Y2Cu2O5 dan BaCuO2 Difraktogram pembelauan sinar-X (XRD) bagi sampel yang didop (x > 0) menunjukkan wujudnya fasa tak mensuperkonduksi Y2BaCuO5 (211). Mikrograf mikroskop imbasan elektron (SEM) menunjukkan bahawa butiran Y2BaCuO5 yang lebih kecil itu termendap di atas permukaan hablur YBa2Cu3O7-d yang lebih besar. Saiz hablur YBCO mengecil dengan peningkatan yittria. Suhu genting kerintangan sifar (Tc) bagi sampel yang didop adalah hampir dengan Tco bagi YBCO untuk x<5, tetapi menurun dengan agak cepat untuk x yang lebih besar. Ketumpatan arus genting angkutan (J) untuk x < 5 meningkat jika dibandingkan dengan YBCO disebabkan oleh proses kepinan fluks magnet oleh fasa 211. Walau bagaimanapun, Jc menurun untuk x yang lebih tinggi kerana meningkatnya hubungan lemah pada sempadan butiran fasa YBCO.
    Matched MeSH terms: Microscopy, Electron, Scanning
  5. YAHYA S, OTHMAN N, DAUD A, JALAR A
    Sains Malaysiana, 2013;42:1793-1798.
    The effect of corrosion inhibition of low carbon steel in water based medium containing lignin was investigated via weight loss method. The evolution of surface morphology has been carried out for 7 to 42 days via optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron microscopy (XPS). Immersion of metal specimen without lignin shows that significant increase in the surface roughness. The longer the immersion time, the more the oxide crust formed. The surface degradation of metal specimen was well protected by immersion in lignin solution. A protective layer containing of lignin was formed on the surface of metal specimens after 7 and 21 days immersion. The corrosion inhibition gives about 13 and 53% inhibition for both 7 and 21 days immersion, respectively. The protective layers were spalling and separated from the metal surface after 42 days immersion in lignin solution possibly due to the increase in corrosion attack after long time immersion according to the increase in dissolved oxygen and may also due to the thermal mismatch between oxide and substrate. The adsorption of protective layer containing lignin was temporary adsorbed on the surface.
    Matched MeSH terms: Microscopy, Electron, Scanning
  6. Nasima Akter, Shahidan Radiman, Faizal Mohamed, Nazaruddin Ramly, Putra EGR, Rini AS
    Sains Malaysiana, 2014;43:203-209.
    Kappa-carrageenan is one form of necessary hydrocolloid. Hydrocolloids are macromolecular materials, which swell upon absorption of water; in some cases, forming a stiff gel in the presence of additives. This property is very important to suspend nanocarriers into gel network, which provide them long time stability at a varying temperature range. In this work, we prepared microemulsion and trapped these particles inside the kappa-carrageenan gel network. The microemulsion was composed of sodium N-lauroylsarcosinate hydrate (SNLS), oleic acid and deionized water. The purpose of this study was to immobilize them into the gel network, giving longer shelf life at a range of temperatures for oral drug delivery. Morphological properties were investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and Fourier transform infrared (FTIR) spectra. The TEM results showed that microemulsions are trapped in the gel network, and the diameter of the microemulsions are below 100 nm, which is comparable with the DLS results. The important functional groups of kappa-carrageenan and microemulsion were shown from the FTIR result of the complex microemulsion gel. These results confirmed the interaction between SNLS based microemulsion and kappa- carrageenan gel.
    Matched MeSH terms: Microscopy, Electron, Transmission
  7. Hazwani Syaza Ahmad, Hanafi Ismail, Azura Abd Rashid
    Sains Malaysiana, 2015;44:835-842.
    Epoxidized natural rubber (ENR-50) has been used as a compatibilizer for natural rubber-recycled acrylonitrile-butadiene
    rubber (NR/NBRr) blends, vulcanized by sulfur. NBR gloves have excellent resistance to punctures, tear and many types
    of chemicals, while NR has good physical and mechanical properties. Incorporation of ENR-50 into the rubber blends
    has improved processability, stiffness, resilience and excellent oil resistance. NR/NBRr blends were prepared by two-roll
    mill with five different compositions with the ENR-50 content fixed at 10 phr. Cure characteristics, mechanical properties
    and morphology (SEM) studies were performed to determine the compatibility of NR/NBRr blends in the presence of ENR-
    50. The cure characteristics showed that NR/NBRr blends with the presence of ENR-50 have lower scorch time (ts2) and
    cure time (t90) than NR/NBRr blends without ENR-50. However, the NR/NBRr blends with ENR-50 exhibited higher minimum
    torque (ML
    ) and maximum torque (MH) which indicated difficult processability of the blends after compatibilization.
    Incorporation of ENR-50 into NR/NBRr blends improved all the tensile properties (tensile strength, tensile modulus and
    elongation at break) compared with NR/NBRr blends without ENR-50. The improvement in hardness upon compatibilization
    is due to an increase in crosslink density. Scanning electron microscopy (SEM images) of the fracture surfaces indicates
    that, with the addition of ENR-50 in NR/NBRr blends, better adhesion between NR and NBRr was obtained, thus improving
    the compatibility of NR/NBRr blends.
    Matched MeSH terms: Microscopy, Electron, Scanning
  8. Toong WY, Khaulah Sulaiman
    In this research we investigated the effect of composition on the fabrication and morphological characteristics of a hybrid polymeric solar cell which consists of an electron donating conjugated polymer, namely is poly(3-hexylthiophene) (P3HT) combined with an electron-accepting component, which is a type of inorganic compound of TiO2 nanocrystals. The composition of TiO2 in the blends is varied and the optimum performance of the devices are studied. The optical and morphological characterizations are carried out via UV-Visible absorption spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The electrical characteristics of the devices are measured by using Keithley 2400 SMU and solar simulator with light intensity of 100 mW/cm2.
    Matched MeSH terms: Microscopy, Electron, Scanning
  9. Saiful Bahari Bakarudin, Sarani Zakaria, Ching HC, Mohd Jani S
    Sains Malaysiana, 2012;41:225-231.
    Liquefactions of kenaf core wood were carried out at different phenol-kenaf (P/k) ratios. Characterizations of kenaf core wood liquefied residue were carried out to measure the degree of liquefaction. This provides a new approach to understand some fundamental aspects of the liquefaction reaction. Functional groups on the raw kenaf core wood and liquefied residue were examined using Fourier transform infrared spectroscopy (FTIR). The crystallinity index of the kenaf wood liquefied residue, which represents crystallinity changes of the cellulose component after the liquefaction process, was studied using X-ray diffraction (XRD). The surface morphology of the wood residue was observed using scanning electron microscopy (SEM). The thermal behavior of the residues was analyzed using thermogravimetric analysis (TGA). Abroad peak around 3450-3400 cm-1 representing OH stretching in lignin start to disappear as P/K ratio increases. The results showed that the higher the P/K ratio the greater the liquefaction of the lignin component in the kenaf core wood. The crystallinity index (CrI) on the kenaf liquefied residues increased with the increase in P/K ratio. SEM images showed that the small fragments attached on the liquefied kenaf residue surface were gradually removed as the P/K ratio was increased from 1.5/1.0 to 2.5/1.0, which is mainly attributed to the greater chemical penetration toward reactive site of the kenaf fibres. Residue content decreased as the P/K ratio increased from 1.5/1.0 to 2.5/1.0. TGA results showed the increase of heat resistance in the residue as the P/K ratio was increased.
    Matched MeSH terms: Microscopy, Electron, Scanning
  10. Nurul Atikah Shariff, Azman Jalar, Muhamad Izhar Sahri, Norinsan Kamil Othman
    Sains Malaysiana, 2014;43:1069-1075.
    Austenitic stainless steels of grade 304 were exposed to dry (Ar-75%CO2) and wet (Ar-75%CO2-12%H2O) environments at 700oC. This experimental setup involved horizontal tube furnace connected to CO2 gas and water vapour facilities. X-ray diffraction (XRD) technique, variable pressure-scanning electron microscope (VP-SEM) and optical microscope techniques were used to characterize the products of corrosion. The results of XRD showed that the phase of oxide layers consists of Cr2O3 and NiCr2O4 in dry CO2, meanwhile Fe2O3, Cr2O3, Fe0.56Ni0.34, Fe3O4 were identified in wet condition after 50 h. Adding 12%H2O in Ar-75%CO2 leads significantly in weight change occurred at 10 h exposure. However, after 20 h, the weight gain was decreased due to spallation of the oxide scale. The addition of water vapour accelerates the oxidation rate on the steel than that in dry condition. Morphologies and growth kinetics of these oxides vary with reaction condition. The oxidation behaviour at different times of exposure and the effect of water vapour were discussed in correlation with the microstructure of the oxides.
    Matched MeSH terms: Microscopy, Electron, Scanning
  11. Nordin Sabli, Zainal Abidin Talib, Chang CB, Wan Mahmood Mat Yunus, Zulkarnain Zainal, Hikmat S. Hilal, et al.
    Sains Malaysiana, 2014;43:1061-1067.
    Tin selenide (SnSe) and copper indium diselenide (CuInSe2) compounds were synthesized by high temperature reaction method using combination of sealed ampoule (at relatively low pressure ~10-1 Pa without inert gas) and heating at specific temperature profile in rocking furnace. Powder X-Ray diffraction analysis showed that the products involved only single phases of SnSe and of CuInSe2 only. Using the reaction products as source materials, the SnSe and CuInSe2 thin films were vacuum-deposited on glass substrates at room temperature. Structural, elemental, surface morphological and optical properties of the as-deposited films were studied by X-Ray diffraction (XRD), energy dispersive X-Ray (EDX) analysis, field emission scanning electron microscopy (FESEM) and UV-Vis-NIR spectroscopy. Single phase of SnSe and CuInSe2 films were obtained by thermal evaporation technique from synthesized SnSe and CuInSe2 compound without further treatment.
    Matched MeSH terms: Microscopy, Electron, Scanning
  12. Mensah EE, Abbas Z, Azis RS, Ibrahim NA, Khamis AM
    Polymers (Basel), 2019 May 24;11(5).
    PMID: 31137695 DOI: 10.3390/polym11050918
    Recycled hematite (α-Fe2O3) nanoparticles with enhanced complex permittivity properties have been incorporated as a filler in a polycaprolactone (PCL) matrix reinforced with oil palm empty fruit bunch (OPEFB) fiber for microwave absorption applications. The complex permittivity values were improved by reducing the particle sizes to the nano scale via high-energy ball milling for 12 h. A total of 5-20 wt.% recycled α-Fe2O3/OPEFB/PCL nanocomposites were examined for their complex permittivity and microwave absorption properties via the open ended coaxial (OEC) technique and the transmission/reflection line measurement using a microstrip connected to a two-port vector network analyzer. The microstructural analysis of the samples included X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). At 1 GHz, the real (ε') and imaginary (ε″) parts of complex permittivity of recycled α-Fe2O3 particles, respectively, increased from 7.88 to 12.75 and 0.14 to 0.40 when the particle size was reduced from 1.73 μm to 16.2 nm. A minimum reflection loss of -24.2 dB was achieved by the 20 wt.% nanocomposite at 2.4 GHz. Recycled α-Fe2O3 nanoparticles are effective fillers for microwave absorbing polymer-based composites in 1-4 GHz range applications.
    Matched MeSH terms: Microscopy, Electron, Transmission
  13. Khoo KS, Nur Farhana Amari, Tan CY, Shahidan Radiman, Redzuwan Yahaya, Muhamad Samudi Yasir
    Sains Malaysiana, 2013;42:167-173.
    Combination of magnetic and biocompatible materials to form core-shell nanomaterials has been widely used in medical fields. These core-shell magnetic biomaterials have a great potential for magnetic fluid hyperthermia (MFH) treatment to remedy cancer. The aims of this study were to investigate the production of core-shell cobalt ferrite/polycaprolactone (CoFe2O4/PCL) nanomaterials with different ratios of cobalt ferrite to caprolactone, to study the effects of using polymer in reducing the agglomerations between particles and to determine the structure, morphology, thermal and magnetic properties of these core-shell nanomaterials. The core-shell nanomaterials were produced by in situ polymerization method. The formation of the CoFe2O4/PCL was investigated by means of Fourier transform infrared spectroscopy (FTIR), x-ray diffractometer (XRD) and transmission electron microscopy (TEM). Its thermal properties were determined by using thermogravimetric analyzer (TGA). The vibrating sample magnetometer (VSM) was used to reveal the magnetic properties. The results for the XRD and FTIR spectra demonstrated the formation of cobalt ferrite and polycaprolactone in core-shell nanomaterials. From the TEM results, it was seen that the core-shell CoFe2O4/PCL nanomaterials were best formed at a ratio of CoFe2O4 to monomer caprolactone mixtures of 1:4.
    Matched MeSH terms: Microscopy, Electron, Transmission
  14. Ho M, Khiew P, Isa D, Tan T, Chiu W, Chia C, et al.
    Sains Malaysiana, 2014;43:885-894.
    In this study, a symmetric supercapacitor has been fabricated by adopting the nanostructured iron oxide (Fe304)-activated carbon (Ac) composite as the core electrode materials. The composite electrodes were prepared via a facile mechanical mixing process and PTFE polymeric solution has been used as the electrode material binder. Structural analysis of the nanocomposite electrodes were characterized by scanning electron microscopy ( sEm) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the prepared supercapacitor were studied using cyclic voltammetry (cv) and electrochemical impedance spectroscopy (Eis) in 1.0 M Na2S03 and 1.0 M Na2SO4 aqueous solutions, respectively. The experimental results showed that the highest specific capacitance of 43 FIg is achieved with a fairly low Fe304 nanomaterials loading (4 wt. %) in 1 M Na2S03. It is clear that the low concentration of nanostructured Fe304 has improved the capacitive performance of the composite via pseudocapacitance charge storage mechanism as well as the enhancement on the specific surface areas of the electrode. However, further increasing of the Fe304 content in the electrode is found to distort the capacitive performance and deteriorate the specific surface area of the electrode, mainly due to the aggregation of the Fe304 particles within the composite. Additionally, the cv results showed that the Fe3041Ac nanocomposite electrode in Na2S03 electrolyte exhibits a better charge storage performance if compared with Na2SO4 solution. It is believed that Fe304 nanoparticles can provide favourable surface adsorption sites for sulphite (S032-) anions which act as catalysts for subsequent redox and intercalation reactions.
    Matched MeSH terms: Microscopy, Electron, Scanning
  15. Mukhlis A Rahman, Mohd Kamal Ghazali, Juhana Jaafar, Ahmad Fauzi Ismail, Wan Muhammad Solehin Wan Abd Aziz, Mohd Hafiz Dzarfan Othman
    Sains Malaysiana, 2015;44:1195-1201.
    This article describes the preparation of titanium dioxide (TiO2) hollow fiber membrane using phase inversion and sintering technique. In this study, nano-sized TiO2 powders with different particle sizes were used to prepare ceramic hollow fiber membranes. In a series of preparation steps, a dispersant was dissolved in organic solvent before the addition of ceramic powders. These steps were followed by the addition of polymer binder. The membrane precursor was obtained by extruding the ceramic suspension into a coagulation bath, which enabled the precipitation of the precursor of ceramic hollow fiber membrane. The dried precursor was later sintered at temperatures ranging from 1200 to 1300oC to obtain TiO2 hollow fiber membrane. Scanning electron microscopy (SEM) was used to study the morphology of TiO2 hollow fiber membrane. The SEM images show the membrane can be shaped into asymmetric structure and symmetric structure based on the ceramic suspension compositions. The highest mechanical strength obtained was 223 MPa when the membrane prepared using 20 wt. % ceramic loading of single nano-sized powder and sintered at 1300oC. TiO2 hollow fiber membrane prepared using similar ceramic loading showed high permeation rate of inert gas. High pure water fluxes were obtained when permeability tests was carried out using TiO2 hollow fiber membrane, prepared using mixture of nano-sized particles, even though its cross-section have a sponge-like structure.
    Matched MeSH terms: Microscopy, Electron, Scanning
  16. Siti Fazlili Abdullah, Shahidan Radiman, Muhammad Azmi Abdul Hamid, Noor Baa’yah Ibrahim
    Sains Malaysiana, 2008;37:233-237.
    Oleic acid (OA) capped wolfram (VI) oxide, WO3 nanoparticles were chemically synthesized and characterized by means of Fourier Transform-Infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The tribological properties of the capped WO3 nanoparticles as an additive in base oils were investigated using a four-ball machine. Results show that OA-capped WO3 nanoparticles are able to prevent water adsorption and capable of being dispersed stable in organic solvents which is base oils. The as-prepared capped WO3 nanoparticles have an average size of 15 nm. In addition, OA-capped WO3 nanoparticles as an additive in base oils perform good anti-wear (AW) and anti-friction (AF) properties owing to the formation of a boundary film.
    Matched MeSH terms: Microscopy, Electron, Transmission
  17. Hanisah Syed Sulaiman, Chin HC, Chan CH, Sarani Zakaria, Sharifah Nabihah Syed Jaafar
    Sains Malaysiana, 2015;44:1635-1642.
    In this study, cellulose nanocrystals (CNC) were produced using acid hydrolysis method. Kenaf core was pretreated with 4
    wt. % sodium hydroxide (NaOH), followed by bleaching using 1.7 wt. % sodium chlorite (NaClO2
    ) in acetate buffer. The
    bleached fiber was acid hydrolyzed for 45 and 55 min using 64 wt. % sulfuric acid (H2
    SO4
    ). The size distribution of the
    CNC segregated via differential centrifugation with different speed was also investigated. The CNC suspension obtained
    was centrifuged at 3000, 6000, 9000 and 12000 rpm. The resultant CNC suspension collected was characterized using
    Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD) and transmission electron microscopy (TEM). FTIR
    results showed the progressive removal of non-cellulosic constituents for each subsequent treatment. It also showed that
    the CNC produced after hydrolysing for 55 min has the highest degree of crystallinity (81.15%). CNC produced from acid
    hydrolysis process of 45 min have lengths between 50 and 270 nm while CNC produced from acid hydrolysis process of
    55 min have length around 40 to 370 nm.
    Matched MeSH terms: Microscopy, Electron, Transmission
  18. Elnagar, Amir M. Bassam, Suhaidah Ibrahim, Abouelnaga, Mostafa A.M., Soliman, Amro Mohamed
    MyJurnal
    Introduction: Diabetes mellitus possesses severe adverse effects on the urinary bladder. Urinary bladder dysfunction is a common health problem affecting diabetic patients causing recurrent infections and urinary incontinence. Objective: To evaluate the histopathological changes in the tissue of urinary bladder in Streptozotocin (STZ) diabetic rats and the protective role of insulin. Methods: Thirty rats were classified into three groups: a control group which received no treatment (Group A), STZ diabetic group (Group B) and Insulin diabetic group (Group C). Animals were sacrificed after six weeks and urinary bladders were harvested and processed for light and electron microscopy. Results: Several histopathological changes were observed in the urinary bladder of the diabetic group including an increase in the thickness of the urothelium, epithelial cells with dark nuclei and large lenticular vesicles, and wide intercellular spaces with numerous collagen fibers. Treatment with insulin reduced the pathological changes induced by STZ. Conclusion: Diabetes mellitus caused significant pathological changes in the urinary bladder of experimental rats. For instance, treating diabetic animals with insulin prevented the development of damaging effects of diabetes on the urinary bladder.
    Matched MeSH terms: Microscopy, Electron
  19. Siti Farhana Hisham, Ishak Ahmad, Rusli Daik, Anita Ramli
    Sains Malaysiana, 2011;40:1179-1186.
    In this study, poly(ethylene terephthalate) (PET) wastes bottle was recycled by glycolysis process using ethylene glycol. The unsaturated polyester resin (UPR) was then prepared by reacting the glycolysed product with maleic anhydride. The blend of UPR based on recycled PET wastes with liquid natural rubber (LNR) was carried out by varying the amount of LNR from 0 to 7.5 wt%. Mechanical tests such as tensile and impact were conducted to investigate the effects of LNR on the mechanical properties. Scanning Electron Microscopy (SEM) was used to analyze the morphology of the breaking area resulted from the tensile tests on the UPR and blend samples. From the results, the blend of 2.5 wt% LNR in UPR based recycled PET wastes achieved the highest strength in the mechanical properties and showed a well dispersed of elastomer particles in the sample morphology compared to other blends concentrations. This blend sample was then compared to the optimum blend of LNR with commercial resin through the glass transition temperature value Tg, mechanical strength and morphology properties. The comparison study showed that the Tg for UPR based recycled PET was higher than the value represented from commercial resin due to the degree of crystalinity in the molecular structure of the materials. LNR was found to be an effective impact modifier which gave a greater improvement in UPR from recycled PET wastes structure but not to the commercial one which needs 5% LNR to achieve the optimum properties. Thus, the compatibility between the UP resin based recycled PET and LNR was much better than with the commercial resin.
    Matched MeSH terms: Microscopy, Electron, Scanning
  20. Al-Dulaimi AA, Shahrir Hashim, Khan M
    Sains Malaysiana, 2011;40:1179-1186.
    Two inorganic pigments (TiO2 and SiO2) were used to prepare composites with polyaniline (PANI) by situ polymerization method. PANI and PANI composites with SiO2 and TiO2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO2 and PANI-TiO2) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments.
    Matched MeSH terms: Microscopy, Electron, Scanning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links